An algorithm of feasible directions to mixed nonlinear complementarity problems and applications

Descripción del Articulo

This work investigates the Feasible Direction Algorithm using interior points applied to the Mixed Nonlinear Complementarity Problem and some applications. This algorithm is based in Feasible Directions Algorithm for Nonlinear Complementarity Problem, which is described briefly. The proposed algorit...

Descripción completa

Detalles Bibliográficos
Autor: Ramírez Gutiérrez, Ángel Enrique
Formato: tesis doctoral
Fecha de Publicación:2017
Institución:Universidad Nacional de Ingeniería
Repositorio:UNI-Tesis
Lenguaje:inglés
OAI Identifier:oai:cybertesis.uni.edu.pe:20.500.14076/18448
Enlace del recurso:http://hdl.handle.net/20.500.14076/18448
Nivel de acceso:acceso abierto
Materia:Algoritmo de direcciones factibles
Complementariedad no lineal mixta
id UUNI_d2e2ac9d339386bdbb1eca408f17f051
oai_identifier_str oai:cybertesis.uni.edu.pe:20.500.14076/18448
network_acronym_str UUNI
network_name_str UNI-Tesis
repository_id_str 1534
dc.title.en.fl_str_mv An algorithm of feasible directions to mixed nonlinear complementarity problems and applications
title An algorithm of feasible directions to mixed nonlinear complementarity problems and applications
spellingShingle An algorithm of feasible directions to mixed nonlinear complementarity problems and applications
Ramírez Gutiérrez, Ángel Enrique
Algoritmo de direcciones factibles
Complementariedad no lineal mixta
title_short An algorithm of feasible directions to mixed nonlinear complementarity problems and applications
title_full An algorithm of feasible directions to mixed nonlinear complementarity problems and applications
title_fullStr An algorithm of feasible directions to mixed nonlinear complementarity problems and applications
title_full_unstemmed An algorithm of feasible directions to mixed nonlinear complementarity problems and applications
title_sort An algorithm of feasible directions to mixed nonlinear complementarity problems and applications
dc.creator.none.fl_str_mv Ramírez Gutiérrez, Ángel Enrique
author Ramírez Gutiérrez, Ángel Enrique
author_facet Ramírez Gutiérrez, Ángel Enrique
author_role author
dc.contributor.advisor.fl_str_mv Ocaña Anaya, Eladio Teófilo
dc.contributor.author.fl_str_mv Ramírez Gutiérrez, Ángel Enrique
dc.subject.es.fl_str_mv Algoritmo de direcciones factibles
Complementariedad no lineal mixta
topic Algoritmo de direcciones factibles
Complementariedad no lineal mixta
description This work investigates the Feasible Direction Algorithm using interior points applied to the Mixed Nonlinear Complementarity Problem and some applications. This algorithm is based in Feasible Directions Algorithm for Nonlinear Complementarity Problem, which is described briefly. The proposed algorithm is important because many mathematical models can be written as mixed nonlinear complementarity problem. The principal idea of this algorithm is to generate, at each iteration, a sequence of feasible directions with respect to the region, defined by the inequality conditions, which are also monotonic descent directions for one potential function. Then, an approximate line search along this direction is performed in order to define the next iteration. Global and asymptotic convergence properties for the algorithm are proved. In order to validade the robustness the algorithm is tested on several benchmark problems, that were found in the literature, considering the same para- meters. In this work one dimensional models describing Oxygen Diffusion inside one cell and In Situ Combustion are also presented together with bidimensional model of the Elastic-Plastic Torsion Problem. These models are re-written as nonlinear com¬plementarity problem and mixed nonlinear complementarity problem. These new formulations are discretized by Finite Diference Scheme or Finite Element Method and, for its discrete forms, the algorithm will be applied. The numerical results are compared with direct numerical simulation using Newton’s method (in the case of Oxygen Diffusion and In Situ Combustion) or exact solution (in the case of Elastic- Plastic Torsion Problem). It is shown that the obtained results are in good agreement with the asymptotic analysis. For the In situ combustion model the corresponding Riemann’s problem is studied in order to validate numerical solutions.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2019-09-12T16:49:10Z
dc.date.available.none.fl_str_mv 2019-09-12T16:49:10Z
dc.date.issued.fl_str_mv 2017
dc.type.es.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.14076/18448
url http://hdl.handle.net/20.500.14076/18448
dc.language.iso.en.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es.fl_str_mv application/pdf
dc.publisher.es.fl_str_mv Universidad Nacional de Ingeniería
dc.source.es.fl_str_mv Universidad Nacional de Ingeniería
Repositorio Institucional - UNI
dc.source.none.fl_str_mv reponame:UNI-Tesis
instname:Universidad Nacional de Ingeniería
instacron:UNI
instname_str Universidad Nacional de Ingeniería
instacron_str UNI
institution UNI
reponame_str UNI-Tesis
collection UNI-Tesis
bitstream.url.fl_str_mv http://cybertesis.uni.edu.pe/bitstream/20.500.14076/18448/3/ramirez_ga.pdf.txt
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/18448/2/license.txt
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/18448/1/ramirez_ga.pdf
bitstream.checksum.fl_str_mv ad99d7413940689057e86331cb724f43
8a4605be74aa9ea9d79846c1fba20a33
c8cc5f6d0b250f2bdf077412835a3eb7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - UNI
repository.mail.fl_str_mv repositorio@uni.edu.pe
_version_ 1840085626319273984
spelling Ocaña Anaya, Eladio TeófiloRamírez Gutiérrez, Ángel EnriqueRamírez Gutiérrez, Ángel Enrique2019-09-12T16:49:10Z2019-09-12T16:49:10Z2017http://hdl.handle.net/20.500.14076/18448This work investigates the Feasible Direction Algorithm using interior points applied to the Mixed Nonlinear Complementarity Problem and some applications. This algorithm is based in Feasible Directions Algorithm for Nonlinear Complementarity Problem, which is described briefly. The proposed algorithm is important because many mathematical models can be written as mixed nonlinear complementarity problem. The principal idea of this algorithm is to generate, at each iteration, a sequence of feasible directions with respect to the region, defined by the inequality conditions, which are also monotonic descent directions for one potential function. Then, an approximate line search along this direction is performed in order to define the next iteration. Global and asymptotic convergence properties for the algorithm are proved. In order to validade the robustness the algorithm is tested on several benchmark problems, that were found in the literature, considering the same para- meters. In this work one dimensional models describing Oxygen Diffusion inside one cell and In Situ Combustion are also presented together with bidimensional model of the Elastic-Plastic Torsion Problem. These models are re-written as nonlinear com¬plementarity problem and mixed nonlinear complementarity problem. These new formulations are discretized by Finite Diference Scheme or Finite Element Method and, for its discrete forms, the algorithm will be applied. The numerical results are compared with direct numerical simulation using Newton’s method (in the case of Oxygen Diffusion and In Situ Combustion) or exact solution (in the case of Elastic- Plastic Torsion Problem). It is shown that the obtained results are in good agreement with the asymptotic analysis. For the In situ combustion model the corresponding Riemann’s problem is studied in order to validate numerical solutions.Este trabajo investiga el Algoritmo de Direcciones Factibles para Problemas de Complementaridad no Lineal Mixta y algunas aplicaciones. Este algoritmo está basado en el Algoritmo de Direcciones Factibles para Problemas de Complementaridad no Lineal, el cual es descrito brevemente. El algoritmo propuesto es importante porque muchos modelos matemáticos pueden ser escritos como problemas de complementaridad no lineal mixta. La idea principal de este algoritmo es generar, en cada iteración, una sucesión de direcciones factibles con respecto a la región, definida por las condiciones de desigualdades, los cuales son direcciones descendentes monótonas para una función potencial. Posteriormente, una búsqueda lineal a lo largo de esta dirección es realizada con el fin de obtener el nuevo punto e iniciar la siguiente iteración. Propiedades de convergencia global y asintótica son probados. Con el fin de validar la robustez del algoritmo, éste es testeado sobre varios problemas testes, que fueron encontrados en la literatura, considerando los mismos parámetros. Este trabajo también presenta modelos unidimensionales describiendo la Difusión de Oxígeno dentro de una célula y el proceso de Combustión In Situ junto con un modelo bidimensional del Problema de Torsión Elasto-Plástico. Estos modelos son reescritos como problemas de complementaridad no lineal y problema de complementaridad no lineal mixta. Estas nuevas formulaciones so discretizadas usando el Esquema de Diferencias Finitas o el Método de Elementos Finitos y, para sus formas discretas, el algoritmo será aplicado. Los resultados numéricos son comparados con simulación numérica directa usando el Método de Newton (en el caso de Difusión de Oxígeno y Combustión In Situ) o la solución exacta (en el caso del problema de Torsión Elasto-Plástico). Es mostrado que los resultados obtenidos concuerdan con el análisis asintótico. Para los modelos de Combustión In Situ el respectivo problema de Riemann es estudiado con el objetivo de validar nuestras soluciones numéricas.Submitted by luis oncebay lazo (luis11_182@hotmail.com) on 2019-09-12T16:49:10Z No. of bitstreams: 1 ramirez_ga.pdf: 1420353 bytes, checksum: c8cc5f6d0b250f2bdf077412835a3eb7 (MD5)Made available in DSpace on 2019-09-12T16:49:10Z (GMT). No. of bitstreams: 1 ramirez_ga.pdf: 1420353 bytes, checksum: c8cc5f6d0b250f2bdf077412835a3eb7 (MD5) Previous issue date: 2017Tesisapplication/pdfengUniversidad Nacional de Ingenieríainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Nacional de IngenieríaRepositorio Institucional - UNIreponame:UNI-Tesisinstname:Universidad Nacional de Ingenieríainstacron:UNIAlgoritmo de direcciones factiblesComplementariedad no lineal mixtaAn algorithm of feasible directions to mixed nonlinear complementarity problems and applicationsinfo:eu-repo/semantics/doctoralThesisSUNEDUDoctor en Ciencias con Mención en MatemáticaUniversidad Nacional de Ingeniería. Facultad de Ciencias. Unidad de PosgradoDoctoradoDoctorado en Ciencias con Mención en MatemáticaDoctoradoTEXTramirez_ga.pdf.txtramirez_ga.pdf.txtExtracted texttext/plain109635http://cybertesis.uni.edu.pe/bitstream/20.500.14076/18448/3/ramirez_ga.pdf.txtad99d7413940689057e86331cb724f43MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://cybertesis.uni.edu.pe/bitstream/20.500.14076/18448/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALramirez_ga.pdframirez_ga.pdfapplication/pdf1420353http://cybertesis.uni.edu.pe/bitstream/20.500.14076/18448/1/ramirez_ga.pdfc8cc5f6d0b250f2bdf077412835a3eb7MD5120.500.14076/18448oai:cybertesis.uni.edu.pe:20.500.14076/184482020-10-28 14:44:14.162Repositorio Institucional - UNIrepositorio@uni.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).