Reconocimiento y clasificación de objetos usando inteligencia artificial basada en SVM y visión estereoscópica
Descripción del Articulo
En esta tesis se desarrolla un sistema de reconocimiento y clasificación de objetos, el cual trata de emular la forma como los humanos percibimos la información visual mediante el uso de dos cámaras ópticas, que actúan como nuestros ojos, y un CPU que procesa la información en una "forma inteli...
| Autor: | |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2013 |
| Institución: | Universidad Nacional de Ingeniería |
| Repositorio: | UNI-Tesis |
| Lenguaje: | español |
| OAI Identifier: | oai:cybertesis.uni.edu.pe:20.500.14076/2093 |
| Enlace del recurso: | http://hdl.handle.net/20.500.14076/2093 |
| Nivel de acceso: | acceso abierto |
| Materia: | Reconocimiento de objetos Sistemas inteligentes Inteligencia artificial Calidad de vida |
| id |
UUNI_a75d09c61e5b3bb52bd37ba27685e7fc |
|---|---|
| oai_identifier_str |
oai:cybertesis.uni.edu.pe:20.500.14076/2093 |
| network_acronym_str |
UUNI |
| network_name_str |
UNI-Tesis |
| repository_id_str |
1534 |
| dc.title.es.fl_str_mv |
Reconocimiento y clasificación de objetos usando inteligencia artificial basada en SVM y visión estereoscópica |
| title |
Reconocimiento y clasificación de objetos usando inteligencia artificial basada en SVM y visión estereoscópica |
| spellingShingle |
Reconocimiento y clasificación de objetos usando inteligencia artificial basada en SVM y visión estereoscópica Condori Arias, Elvis Franks Reconocimiento de objetos Sistemas inteligentes Inteligencia artificial Calidad de vida |
| title_short |
Reconocimiento y clasificación de objetos usando inteligencia artificial basada en SVM y visión estereoscópica |
| title_full |
Reconocimiento y clasificación de objetos usando inteligencia artificial basada en SVM y visión estereoscópica |
| title_fullStr |
Reconocimiento y clasificación de objetos usando inteligencia artificial basada en SVM y visión estereoscópica |
| title_full_unstemmed |
Reconocimiento y clasificación de objetos usando inteligencia artificial basada en SVM y visión estereoscópica |
| title_sort |
Reconocimiento y clasificación de objetos usando inteligencia artificial basada en SVM y visión estereoscópica |
| dc.creator.none.fl_str_mv |
Condori Arias, Elvis Franks |
| author |
Condori Arias, Elvis Franks |
| author_facet |
Condori Arias, Elvis Franks |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Rodríguez Bustinza, Ricardo Raúl |
| dc.contributor.author.fl_str_mv |
Condori Arias, Elvis Franks |
| dc.subject.es.fl_str_mv |
Reconocimiento de objetos Sistemas inteligentes Inteligencia artificial Calidad de vida |
| topic |
Reconocimiento de objetos Sistemas inteligentes Inteligencia artificial Calidad de vida |
| description |
En esta tesis se desarrolla un sistema de reconocimiento y clasificación de objetos, el cual trata de emular la forma como los humanos percibimos la información visual mediante el uso de dos cámaras ópticas, que actúan como nuestros ojos, y un CPU que procesa la información en una "forma inteligente”. La compleja tarea de simular el sentido de la vista es dividida en un conjunto de tareas más simples, que abarcan desde la captura de las imágenes hasta el reconocimiento de objetos en la escena tridimensional. Se utiliza visión estereoscópica para obtener información acerca de la profundidad de la escena a partir de un par estereoscópico, los procesos de segmentación utilizan esta información para obtener regiones de interés en el proceso de identificación de un objeto. El reconocimiento y clasificación de objetos se realiza mediante técnicas de inteligencia artificial ejecutadas en un computador. Específicamente en esta tesis se utiliza SVM, support vector machine, que es un método muy poderoso y que en pocos años desde su introducción ya ha superado a otras técnicas de inteligencia artificial como las redes neuronales. Se presenta el desarrollo de los algoritmos utilizados en cada una de las fases de la tesis; algoritmos para la visión estereoscópica y realce de las características en las imágenes de entrada, considerados de bajo nivel; los algoritmos para segmentación y extracción de características, considerados de nivel intermedio; y finalmente los algoritmos de alto nivel, que realizan los procesos de reconocimiento y clasificación. El sistema de reconocimiento de objetos es entrenado mediante ejemplos previos, y se evalúa su comportamiento frente a nuevos objetos de la misma clase para los cuales ya ha sido entrenado. |
| publishDate |
2013 |
| dc.date.accessioned.none.fl_str_mv |
2016-09-13T00:12:36Z |
| dc.date.available.none.fl_str_mv |
2016-09-13T00:12:36Z |
| dc.date.issued.fl_str_mv |
2013 |
| dc.type.es.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| format |
bachelorThesis |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.14076/2093 |
| url |
http://hdl.handle.net/20.500.14076/2093 |
| dc.language.iso.es.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.es.fl_str_mv |
application/pdf |
| dc.publisher.es.fl_str_mv |
Universidad Nacional de Ingeniería |
| dc.source.es.fl_str_mv |
Universidad Nacional de Ingeniería Repositorio Institucional - UNI |
| dc.source.none.fl_str_mv |
reponame:UNI-Tesis instname:Universidad Nacional de Ingeniería instacron:UNI |
| instname_str |
Universidad Nacional de Ingeniería |
| instacron_str |
UNI |
| institution |
UNI |
| reponame_str |
UNI-Tesis |
| collection |
UNI-Tesis |
| bitstream.url.fl_str_mv |
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/2093/3/condori_%20ae.pdf.txt http://cybertesis.uni.edu.pe/bitstream/20.500.14076/2093/1/condori_%20ae.pdf http://cybertesis.uni.edu.pe/bitstream/20.500.14076/2093/2/license.txt |
| bitstream.checksum.fl_str_mv |
c80b9fe2bf1edad0ba70632510944921 4adea127c962a7485e90bbb2a1bd2d42 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional - UNI |
| repository.mail.fl_str_mv |
repositorio@uni.edu.pe |
| _version_ |
1840085458259804160 |
| spelling |
Rodríguez Bustinza, Ricardo RaúlCondori Arias, Elvis FranksCondori Arias, Elvis Franks2016-09-13T00:12:36Z2016-09-13T00:12:36Z2013http://hdl.handle.net/20.500.14076/2093En esta tesis se desarrolla un sistema de reconocimiento y clasificación de objetos, el cual trata de emular la forma como los humanos percibimos la información visual mediante el uso de dos cámaras ópticas, que actúan como nuestros ojos, y un CPU que procesa la información en una "forma inteligente”. La compleja tarea de simular el sentido de la vista es dividida en un conjunto de tareas más simples, que abarcan desde la captura de las imágenes hasta el reconocimiento de objetos en la escena tridimensional. Se utiliza visión estereoscópica para obtener información acerca de la profundidad de la escena a partir de un par estereoscópico, los procesos de segmentación utilizan esta información para obtener regiones de interés en el proceso de identificación de un objeto. El reconocimiento y clasificación de objetos se realiza mediante técnicas de inteligencia artificial ejecutadas en un computador. Específicamente en esta tesis se utiliza SVM, support vector machine, que es un método muy poderoso y que en pocos años desde su introducción ya ha superado a otras técnicas de inteligencia artificial como las redes neuronales. Se presenta el desarrollo de los algoritmos utilizados en cada una de las fases de la tesis; algoritmos para la visión estereoscópica y realce de las características en las imágenes de entrada, considerados de bajo nivel; los algoritmos para segmentación y extracción de características, considerados de nivel intermedio; y finalmente los algoritmos de alto nivel, que realizan los procesos de reconocimiento y clasificación. El sistema de reconocimiento de objetos es entrenado mediante ejemplos previos, y se evalúa su comportamiento frente a nuevos objetos de la misma clase para los cuales ya ha sido entrenado.Submitted by Admin Admin (admin@uni.edu.pe) on 2016-09-13T00:12:36Z No. of bitstreams: 1 condori_ ae.pdf: 3416932 bytes, checksum: 4adea127c962a7485e90bbb2a1bd2d42 (MD5)Made available in DSpace on 2016-09-13T00:12:36Z (GMT). No. of bitstreams: 1 condori_ ae.pdf: 3416932 bytes, checksum: 4adea127c962a7485e90bbb2a1bd2d42 (MD5)Tesisapplication/pdfspaUniversidad Nacional de Ingenieríainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Nacional de IngenieríaRepositorio Institucional - UNIreponame:UNI-Tesisinstname:Universidad Nacional de Ingenieríainstacron:UNIReconocimiento de objetosSistemas inteligentesInteligencia artificialCalidad de vidaReconocimiento y clasificación de objetos usando inteligencia artificial basada en SVM y visión estereoscópicainfo:eu-repo/semantics/bachelorThesisSUNEDUIngeniero MecatrónicoUniversidad Nacional de Ingeniería. Facultad de Ingeniería MecánicaTítulo ProfesionalIngeniería MecatrónicaIngenieríaTEXTcondori_ ae.pdf.txtcondori_ ae.pdf.txtExtracted texttext/plain186313http://cybertesis.uni.edu.pe/bitstream/20.500.14076/2093/3/condori_%20ae.pdf.txtc80b9fe2bf1edad0ba70632510944921MD53ORIGINALcondori_ ae.pdfcondori_ ae.pdfapplication/pdf3416932http://cybertesis.uni.edu.pe/bitstream/20.500.14076/2093/1/condori_%20ae.pdf4adea127c962a7485e90bbb2a1bd2d42MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://cybertesis.uni.edu.pe/bitstream/20.500.14076/2093/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5220.500.14076/2093oai:cybertesis.uni.edu.pe:20.500.14076/20932021-03-25 14:07:19.103Repositorio Institucional - UNIrepositorio@uni.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.957005 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).