Redes neuronales artificiales aplicadas a la remoción de cobre en agua utilizando quitosano entrecruzado con glutaraldehído

Descripción del Articulo

Con el objeto de estudiar un sistema inteligente capaz de predecir el comportamiento porcentual en la remoción de cobre en aguas desionizada, se ha diseñado una técnica de inteligencia artificial aplicado al problema químico de remoción de Cu (II) en aguas, teniendo como soporte de programación el s...

Descripción completa

Detalles Bibliográficos
Autor: Blanco Lecca, Manuel Enrique
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Universidad Nacional de Ingeniería
Repositorio:UNI-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.uni.edu.pe:20.500.14076/19048
Enlace del recurso:http://hdl.handle.net/20.500.14076/19048
Nivel de acceso:acceso abierto
Materia:Redes neuronales artificiales
Sistemas inteligentes
Inteligencia artificial
https://purl.org/pe-repo/ocde/ford#1.04.03
Descripción
Sumario:Con el objeto de estudiar un sistema inteligente capaz de predecir el comportamiento porcentual en la remoción de cobre en aguas desionizada, se ha diseñado una técnica de inteligencia artificial aplicado al problema químico de remoción de Cu (II) en aguas, teniendo como soporte de programación el software MATLAB R2014a. Este sistema ha sido entrenado inicialmente con 74 datos ingresados como patrones de aprendizaje, teniendo como parámetros de ingreso para la red neuronal artificial 6 parámetros críticos de la experimentación: pH, masa de quitosano entrecruzado con glutaraldehído (g), concentración de glutaraldehído (GLA) (g/100mL), tiempo de agitación (min), frecuencia de agitación (rpm), y concentración inicial de cobre (ppm). Se verificó que el máximo error de predicción del modelo de red neuronal artificial del tipo perceptrón multicapa (14.15%) se obtiene a partir de 16 capas ocultas. Para comprobar la efectividad de la red neuronal, se hizo uso de 9 mediciones distintas a las de la matriz de experimentos, para así realizar la validación de este sistema, verificando así la efectividad de nuestra red neuronal (a un 98.79% de correspondencia entre los valores predictivos, respecto a los valores reales observados). La descontaminación se logra por captura del ion Cu (II) (analito de estudio en aguas) por las perlas de quitosano entrecruzado con glutaraldehído. La obtención de los datos experimentales se toma por diferencia porcentual entre la concentración inicial del agua (contaminada con CuSO4.5H2O) y la concentración obtenida después del proceso de descontaminación con las perlas de quitosano entrecruzadas con glutaraldehído, registrado por la técnica de espectrofotometría de absorción atómica.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).