Modelización de la resistencia a la compresión del concreto mediante redes neuronales artificiales

Descripción del Articulo

El uso del concreto como elemento estructural va aumentando año tras año. Sin embargo, este producto requiere de unos estrictos controles de calidad sobre sus propiedades mecánicas para el uso como elemento estructural. Este tipo de control implica la existencia de equipos de ensayo con una capacida...

Descripción completa

Detalles Bibliográficos
Autores: Acuña Pinaud, Leoncio Luis, Torre Carrillo, Ana Victoria, Moromi Nakata, Isabel, Espinoza Haro, Pedro Celino, García Fernández, Francisco
Formato: artículo
Fecha de Publicación:2013
Institución:Universidad Nacional de Ingeniería
Repositorio:UNI-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.uni.edu.pe:20.500.14076/13715
Enlace del recurso:http://hdl.handle.net/20.500.14076/13715
https://doi.org/10.21754/tecnia.v23i2.71
Nivel de acceso:acceso abierto
Materia:Concreto
Resistencia a la compresión
Redes neuronales artificiales
Descripción
Sumario:El uso del concreto como elemento estructural va aumentando año tras año. Sin embargo, este producto requiere de unos estrictos controles de calidad sobre sus propiedades mecánicas para el uso como elemento estructural. Este tipo de control implica la existencia de equipos de ensayo con una capacidad de carga de hasta 3.000KN. Sería de gran utilidad para el control de producción la utilización de un método alternativo de gran fiabilidad, que permitiera conocer las propiedades mecánicas a partir de otras propiedades físicas y mecánicas más fáciles de obtener. La alta capacidad de las redes neuronales artificiales (ANN) para modelar los más diversos procesos industriales, las convierte en una herramienta de gran utilidad en el ámbito de la industria del concreto. En este estudio se ha desarrollado una red neuronal para obtener la resistencia a compresión del concreto y se ha modelado dicha propiedad a partir de la composición del concreto y de sus parámetros de fabricación. La red neuronal diseñada, un perceptrón multicapa, ha permitido obtener la resistencia a compresión del concreto con un coeficiente de correlación de 0,97. Esto demuestra la capacidad de las redes neuronales artificiales para obtener la resistencia a compresión del concreto.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).