Utilización de la teoría de dualidad en la solución de inecuaciones variacionales y quasivariacionales mediante el método de elementos finitos

Descripción del Articulo

Los problemas con inecuaciones variacionales se presentan con frecuencia en diversos modelos matemáticos originados en la Mecánica de fluidos, Elasticidad y la Teoría de control. Usualmente se enfrenta el problema de minimizar una cierta funcional definida sobre un espacio de Hilbert, que puede repr...

Descripción completa

Detalles Bibliográficos
Autor: Roca Galindo, Luis Rodolfo
Formato: tesis de grado
Fecha de Publicación:2004
Institución:Universidad Nacional de Ingeniería
Repositorio:UNI-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.uni.edu.pe:20.500.14076/2508
Enlace del recurso:http://hdl.handle.net/20.500.14076/2508
Nivel de acceso:acceso abierto
Materia:Inecuaciones variables
Modelos matemáticos
Ecuaciones en Derivadas Parciales
Método de Elementos Finitos
id UUNI_8357a796e4494bbf4ca713cea376aecd
oai_identifier_str oai:cybertesis.uni.edu.pe:20.500.14076/2508
network_acronym_str UUNI
network_name_str UNI-Tesis
repository_id_str 1534
dc.title.es.fl_str_mv Utilización de la teoría de dualidad en la solución de inecuaciones variacionales y quasivariacionales mediante el método de elementos finitos
title Utilización de la teoría de dualidad en la solución de inecuaciones variacionales y quasivariacionales mediante el método de elementos finitos
spellingShingle Utilización de la teoría de dualidad en la solución de inecuaciones variacionales y quasivariacionales mediante el método de elementos finitos
Roca Galindo, Luis Rodolfo
Inecuaciones variables
Modelos matemáticos
Ecuaciones en Derivadas Parciales
Método de Elementos Finitos
title_short Utilización de la teoría de dualidad en la solución de inecuaciones variacionales y quasivariacionales mediante el método de elementos finitos
title_full Utilización de la teoría de dualidad en la solución de inecuaciones variacionales y quasivariacionales mediante el método de elementos finitos
title_fullStr Utilización de la teoría de dualidad en la solución de inecuaciones variacionales y quasivariacionales mediante el método de elementos finitos
title_full_unstemmed Utilización de la teoría de dualidad en la solución de inecuaciones variacionales y quasivariacionales mediante el método de elementos finitos
title_sort Utilización de la teoría de dualidad en la solución de inecuaciones variacionales y quasivariacionales mediante el método de elementos finitos
dc.creator.none.fl_str_mv Roca Galindo, Luis Rodolfo
author Roca Galindo, Luis Rodolfo
author_facet Roca Galindo, Luis Rodolfo
author_role author
dc.contributor.advisor.fl_str_mv Mantilla Núñez, Irla Doraliza
dc.contributor.author.fl_str_mv Roca Galindo, Luis Rodolfo
dc.subject.es.fl_str_mv Inecuaciones variables
Modelos matemáticos
Ecuaciones en Derivadas Parciales
Método de Elementos Finitos
topic Inecuaciones variables
Modelos matemáticos
Ecuaciones en Derivadas Parciales
Método de Elementos Finitos
description Los problemas con inecuaciones variacionales se presentan con frecuencia en diversos modelos matemáticos originados en la Mecánica de fluidos, Elasticidad y la Teoría de control. Usualmente se enfrenta el problema de minimizar una cierta funcional definida sobre un espacio de Hilbert, que puede representar la energía total del sistema, o la velocidad del flujo de un fluido. En los últimos 50 años se viene realizando un intenso proceso de investigación relacionado a estos problemas que involucran Ecuaciones en Derivadas Parciales (EDP’s). Parte importante de los logros obtenidos en la investigación de estos temas se deben al matemático Jacques-Louis Lions (1928-2001) quien en colaboración con otro matemático importante en este tema, Guido Stampacchia, publicó en 1965 un trabajo titulado “Inéquations variationnelles non coercives”, ellos además son autores del teorema Lions- Stampacchia, que nos permite demostrar la existencia y unicidad de solución de los problemas que involucran inecuaciones variacionales (IVE’s); así mismo es relevante la investigación de los modelos físicos que involucran IVE’s llevada a cabo por Lions y Duvaut entre 1969 y 1970, y que se encuentra condensada en el libro “Les inéquations en Mecánique et en Physique”. Es finalmente en colaboración con Alain Bensoussan, que aparece la publicación “Contrôle impulsionnel et inéquations variationelles” donde se plantean problemas originados en la economía mediante inecuaciones quasivariacionales (IQV). El presente trabajo consiste en buscar una solución numérica de un problema de frontera con EDP’s, mediante el tratamiento de los problemas variacionales y quasivariacionales originados; existen muchas alternativas al momento de aproximar la solución de un problema con IVE’s, como son: el método de relajación, el método del gradiente y el método de penalización, que junto con otras variantes tienen como principal ventaja la sencillez teórica y la facilidad para codificar los algoritmos correspondientes, pero al mismo tiempo tienen como desventaja la dificultad en el tratamiento de funcionales no diferenciables. En el presente trabajo se utiliza el método de dualidad para la resolución de problemas que involucren (IVE’s), mediante la optimización de funcionales convexos que permitan formular el problema variacional como dos problemas: problema primal y problema dual, de los cuales se elige el problema dual para facilitar la búsqueda de la solución aproximada utilizando el Método de Elementos Finitos (MEF). Además la introducción de la dualidad permite el tratamiento de los funcionales no diferenciables mediante la búsqueda del punto de silla del lagrangiano asociado al problema de optimización dual; para esto utilizamos un algoritmo de tipo Uzawa. Este algoritmo puede usarse tanto para las IVE’s de primera especie como para las de segunda especie. La no diferenciabilidad se salva mediante la introducción de j * el funcional conjugado de j, haciendo uso de la aproximación Yosida para el caso de los operadores monótonos maximales. El contenido del trabajo está descrito en cuatro capítulos. En el primero se exponen los conceptos básicos y resultados necesarios para sustentar el desarrollo que realizaremos a lo largo del presente estudio. En el segundo capítulo se desarrolla la formulación de la teoría de dualidad y su aplicación en la resolución de las IVE's. En el tercer capítulo se toma como problema test un problema de filtración de un fluido en un medio poroso que conduce a formulaciones débiles asociadas a funcionales no diferenciables. En el cuarto capítulo se realiza la resolución numérica mediante del Método de Elementos Finitos para el problema variacional y quasivariacional obteniéndose los resultados numéricos correspondientes.
publishDate 2004
dc.date.accessioned.none.fl_str_mv 2016-11-10T23:22:32Z
dc.date.available.none.fl_str_mv 2016-11-10T23:22:32Z
dc.date.issued.fl_str_mv 2004
dc.type.es.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.14076/2508
url http://hdl.handle.net/20.500.14076/2508
dc.language.iso.es.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es.fl_str_mv application/pdf
dc.publisher.es.fl_str_mv Universidad Nacional de Ingeniería
dc.source.es.fl_str_mv Universidad Nacional de Ingeniería
Repositorio Institucional - UNI
dc.source.none.fl_str_mv reponame:UNI-Tesis
instname:Universidad Nacional de Ingeniería
instacron:UNI
instname_str Universidad Nacional de Ingeniería
instacron_str UNI
institution UNI
reponame_str UNI-Tesis
collection UNI-Tesis
bitstream.url.fl_str_mv http://cybertesis.uni.edu.pe/bitstream/20.500.14076/2508/3/roca_gl.pdf.txt
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/2508/5/carta_de_autorizaci%c3%b3n.pdf.txt
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/2508/2/license.txt
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/2508/1/roca_gl.pdf
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/2508/4/carta_de_autorizaci%c3%b3n.pdf
bitstream.checksum.fl_str_mv 0e3ba3d886b40d82a8f45541790416ce
ff5c13ebccaebf184d1a1c99e850f01a
8a4605be74aa9ea9d79846c1fba20a33
4eec7b716a3172ba62f8f114b4f86c69
d4d2d4734ba632bda3de0ea1969c2fcf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - UNI
repository.mail.fl_str_mv repositorio@uni.edu.pe
_version_ 1848963955651772416
spelling Mantilla Núñez, Irla DoralizaRoca Galindo, Luis RodolfoRoca Galindo, Luis Rodolfo2016-11-10T23:22:32Z2016-11-10T23:22:32Z2004http://hdl.handle.net/20.500.14076/2508Los problemas con inecuaciones variacionales se presentan con frecuencia en diversos modelos matemáticos originados en la Mecánica de fluidos, Elasticidad y la Teoría de control. Usualmente se enfrenta el problema de minimizar una cierta funcional definida sobre un espacio de Hilbert, que puede representar la energía total del sistema, o la velocidad del flujo de un fluido. En los últimos 50 años se viene realizando un intenso proceso de investigación relacionado a estos problemas que involucran Ecuaciones en Derivadas Parciales (EDP’s). Parte importante de los logros obtenidos en la investigación de estos temas se deben al matemático Jacques-Louis Lions (1928-2001) quien en colaboración con otro matemático importante en este tema, Guido Stampacchia, publicó en 1965 un trabajo titulado “Inéquations variationnelles non coercives”, ellos además son autores del teorema Lions- Stampacchia, que nos permite demostrar la existencia y unicidad de solución de los problemas que involucran inecuaciones variacionales (IVE’s); así mismo es relevante la investigación de los modelos físicos que involucran IVE’s llevada a cabo por Lions y Duvaut entre 1969 y 1970, y que se encuentra condensada en el libro “Les inéquations en Mecánique et en Physique”. Es finalmente en colaboración con Alain Bensoussan, que aparece la publicación “Contrôle impulsionnel et inéquations variationelles” donde se plantean problemas originados en la economía mediante inecuaciones quasivariacionales (IQV). El presente trabajo consiste en buscar una solución numérica de un problema de frontera con EDP’s, mediante el tratamiento de los problemas variacionales y quasivariacionales originados; existen muchas alternativas al momento de aproximar la solución de un problema con IVE’s, como son: el método de relajación, el método del gradiente y el método de penalización, que junto con otras variantes tienen como principal ventaja la sencillez teórica y la facilidad para codificar los algoritmos correspondientes, pero al mismo tiempo tienen como desventaja la dificultad en el tratamiento de funcionales no diferenciables. En el presente trabajo se utiliza el método de dualidad para la resolución de problemas que involucren (IVE’s), mediante la optimización de funcionales convexos que permitan formular el problema variacional como dos problemas: problema primal y problema dual, de los cuales se elige el problema dual para facilitar la búsqueda de la solución aproximada utilizando el Método de Elementos Finitos (MEF). Además la introducción de la dualidad permite el tratamiento de los funcionales no diferenciables mediante la búsqueda del punto de silla del lagrangiano asociado al problema de optimización dual; para esto utilizamos un algoritmo de tipo Uzawa. Este algoritmo puede usarse tanto para las IVE’s de primera especie como para las de segunda especie. La no diferenciabilidad se salva mediante la introducción de j * el funcional conjugado de j, haciendo uso de la aproximación Yosida para el caso de los operadores monótonos maximales. El contenido del trabajo está descrito en cuatro capítulos. En el primero se exponen los conceptos básicos y resultados necesarios para sustentar el desarrollo que realizaremos a lo largo del presente estudio. En el segundo capítulo se desarrolla la formulación de la teoría de dualidad y su aplicación en la resolución de las IVE's. En el tercer capítulo se toma como problema test un problema de filtración de un fluido en un medio poroso que conduce a formulaciones débiles asociadas a funcionales no diferenciables. En el cuarto capítulo se realiza la resolución numérica mediante del Método de Elementos Finitos para el problema variacional y quasivariacional obteniéndose los resultados numéricos correspondientes.Submitted by Quispe Rabanal Flavio (flaviofime@hotmail.com) on 2016-11-10T23:22:31Z No. of bitstreams: 1 roca_gl.pdf: 1139106 bytes, checksum: 4eec7b716a3172ba62f8f114b4f86c69 (MD5)Made available in DSpace on 2016-11-10T23:22:32Z (GMT). No. of bitstreams: 1 roca_gl.pdf: 1139106 bytes, checksum: 4eec7b716a3172ba62f8f114b4f86c69 (MD5)Tesisapplication/pdfspaUniversidad Nacional de Ingenieríainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Nacional de IngenieríaRepositorio Institucional - UNIreponame:UNI-Tesisinstname:Universidad Nacional de Ingenieríainstacron:UNIInecuaciones variablesModelos matemáticosEcuaciones en Derivadas ParcialesMétodo de Elementos FinitosUtilización de la teoría de dualidad en la solución de inecuaciones variacionales y quasivariacionales mediante el método de elementos finitosinfo:eu-repo/semantics/bachelorThesisSUNEDULicenciado en MatemáticaUniversidad Nacional de Ingeniería. Facultad de CienciasTítulo ProfesionalMatemáticaLicenciaturaTEXTroca_gl.pdf.txtroca_gl.pdf.txtExtracted texttext/plain180591http://cybertesis.uni.edu.pe/bitstream/20.500.14076/2508/3/roca_gl.pdf.txt0e3ba3d886b40d82a8f45541790416ceMD53carta_de_autorización.pdf.txtcarta_de_autorización.pdf.txtExtracted texttext/plain987http://cybertesis.uni.edu.pe/bitstream/20.500.14076/2508/5/carta_de_autorizaci%c3%b3n.pdf.txtff5c13ebccaebf184d1a1c99e850f01aMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://cybertesis.uni.edu.pe/bitstream/20.500.14076/2508/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALroca_gl.pdfroca_gl.pdfapplication/pdf1139106http://cybertesis.uni.edu.pe/bitstream/20.500.14076/2508/1/roca_gl.pdf4eec7b716a3172ba62f8f114b4f86c69MD51carta_de_autorización.pdfcarta_de_autorización.pdfapplication/pdf147794http://cybertesis.uni.edu.pe/bitstream/20.500.14076/2508/4/carta_de_autorizaci%c3%b3n.pdfd4d2d4734ba632bda3de0ea1969c2fcfMD5420.500.14076/2508oai:cybertesis.uni.edu.pe:20.500.14076/25082025-11-07 16:27:10.962Repositorio Institucional - UNIrepositorio@uni.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.44655
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).