Un espacio de diferenciabilidad GÂTEAUX que no es ASPLUND débil
Descripción del Articulo
Presentamos la construcción de un espacio de diferenciabilidad Gâteaux que no es Asplund débil basándonos principalmente en los siguientes resultados: 1) Si (X* ; ω*) es débilmente Stegall entonces X es un espacio de diferenciabilidad Gâteaux. 2) Si (C(KA); ||•||∞) es Asplund débil entonces A es per...
| Autor: | |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2019 |
| Institución: | Universidad Nacional de Ingeniería |
| Repositorio: | UNI-Tesis |
| Lenguaje: | español |
| OAI Identifier: | oai:cybertesis.uni.edu.pe:20.500.14076/21487 |
| Enlace del recurso: | http://hdl.handle.net/20.500.14076/21487 |
| Nivel de acceso: | acceso abierto |
| Materia: | Espacio de diferenciabilidad Gâteaux Espacio Aplund débil Espacio de Kalenda Juego de Cantor Espacio débilmente Stegall https://purl.org/pe-repo/ocde/ford#1.01.01 |
| Sumario: | Presentamos la construcción de un espacio de diferenciabilidad Gâteaux que no es Asplund débil basándonos principalmente en los siguientes resultados: 1) Si (X* ; ω*) es débilmente Stegall entonces X es un espacio de diferenciabilidad Gâteaux. 2) Si (C(KA); ||•||∞) es Asplund débil entonces A es perfectamente magro. Más adelante probaremos la existencia de un subconjunto A denso no magro de (0; 1) y A un σ−ideal fuertemente topológicamente estable en ({0; 1}N; p) de modo que, bajo ciertas condiciones especiales, el espacio (BVA[0; 1]; A) sea aproximadamente Stegall con respecto a A. En consecuencia, (C(KA)*; ω*) es débilmente Stegall. Finalmente, por (1) y (2), concluiremos que C(KA) es un espacio de diferenciabilidad Gâteaux que no es Asplund débil. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).