Modelamiento y simulación de un sistema de flujo bifásico en el interior de un tanque airlift de circulación interna usando dinámica de fluidos computacional

Descripción del Articulo

Actualmente en el Perú, la minería es una de las actividades más importantes pues genera ingresos económicos al país. Sin embargo, su materia prima es cada vez más escasa y se tiene que recurrir a procesos fisicoquímicos optimizados que permitan obtener los metales valiosos de minerales cada vez más...

Descripción completa

Detalles Bibliográficos
Autor: Cárdenas Alvarez, Christian Benito
Formato: tesis de maestría
Fecha de Publicación:2019
Institución:Universidad Nacional de Ingeniería
Repositorio:UNI-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.uni.edu.pe:20.500.14076/19698
Enlace del recurso:http://hdl.handle.net/20.500.14076/19698
Nivel de acceso:acceso abierto
Materia:Ecuaciones de Navier-Stokes - Soluciones numéricas
Dinámica de fluidos computacional
Software Ansys Fluent
https://purl.org/pe-repo/ocde/ford#1.03.03
Descripción
Sumario:Actualmente en el Perú, la minería es una de las actividades más importantes pues genera ingresos económicos al país. Sin embargo, su materia prima es cada vez más escasa y se tiene que recurrir a procesos fisicoquímicos optimizados que permitan obtener los metales valiosos de minerales cada vez más complejos de ser procesados. Para esto, algunas compañías mineras utilizan tanques agitados que permiten que el proceso de lixiviación (extracción de un constituyente soluble de un sólido por medio de un solvente), tradicionalmente llevado a cabo por percolación en pilas, se intensifique y se acelere. Uno de estos tanques, llamado airlift, (porque realiza un transporte mediante el uso de aire) logra la suspensión del mineral y su mezcla con la solución lixiviante a partir únicamente de una inyección de aire. Dos zonas importantes del tanque airlift son el riser y el downcomer, el riser es la zona del tanque airlift donde el sistema de fluidos asciende y el downcomer es la zona por donde desciende. Visto desde el punto de vista físico, este proceso se comporta como el flujo de un fluido multifásico, por lo que, mediante el uso de las ecuaciones de la dinámica de fluidos, podemos describir y predecir su comportamiento. No obstante, los sistemas de ecuaciones diferenciales no lineales de la dinámica de fluidos adquieren formas muy complejas en situaciones reales. Su resolución en estos casos debe darse numéricamente. Para ello, debemos recurrir a métodos de solución adecuados para su resolución, como es el caso de la dinámica de fluidos computacional. El objetivo de este trabajo es determinar un modelo adecuado para simular el comportamiento de un sistema de flujo bifásico líquido-gas en el interior del tanque airlift. Aunque un sistema bifásico sea una simplificación que no representa toda la física de un sistema trifásico reactivo como en una lixiviación de minerales, los resultados aquí encontrados los prefiguran parcialmente y permiten sacar conclusiones valiosas de modelado y de simulación cuya obtención se vería drásticamente dificultada al tratar el problema en su máxima complejidad. Uno de los métodos para resolver este problema es el uso de un enfoque Euler-Euler, que reproduce el caso de flujos con fases continuas. Con el enfoque seleccionado se usó el modelo Euleriano que es el más adecuado para sistemas en donde hay un ingreso de aire en forma de burbujas y hay valores de la fracción volumétrica considerables, un modelo se dice que es Euleriano porque la velocidad va a depender de las coordenadas espaciales, de la misma manera es para el enfoque Euler-Euler. También se usó un modelo de turbulencia para casos reales. En este trabajo se usó el modelo de turbulencia k- ε realizable. Los resultados principales que obtuvimos fueron la velocidad del líquido en la zona del riser y las fracciones volumétricas en las zonas del riser y downcomer. Son resultados importantes para, por ejemplo, la selección de las dimensiones del tanque a usar. El resultado final cuando las condiciones de entrada fueron el flujo volumétrico de 3.33 x 10-4 m3/s, el diámetro de burbuja de 0.009 m y el factor de arrastre de 2.75 indico que: velocidad del líquido en la zona del riser de 0.335 m/s, fracciones volumétricas en las zonas del riser y downcomer de 0.046 y 0.026 respectivamente, mientras que los valores experimentales de la fuente bibliográfica usada para comparación fueron de 0.420 m/s, 0.075 m/s y 0.020 m/s respectivamente. También los comparamos con resultados computacionales extraídos de la literatura, los cuales fueron de 0.390 m/s, 0.055 m/s y 0.032 m/s. Ello revela que dos de los parámetros calculados por nuestro modelo dan valores muy satisfactorios. La herramienta computacional aquí desarrollada es ahora una aliada útil para el diseño de equipos y procesos que se lleven a cabo en tanques airlifts.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).