Monte Carlo simulation for prediction of worsening conditions of type-2 diabetes patients at peri-urban zones of lima city

Descripción del Articulo

From a sample of 1K type-2 diabetes cases, using Monte Carlo simulation and real data, we have estimated that a 2.5% might be potential candidates in being in the highest levels of progress of type-2 diabetes as manifested in nephropathy or necrosis, In addition, a 1 % of the sample might be highly...

Descripción completa

Detalles Bibliográficos
Autor: Nieto Chaupis, Huber
Formato: objeto de conferencia
Fecha de Publicación:2016
Institución:Universidad de Ciencias y Humanidades
Repositorio:UCH-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.uch.edu.pe:uch/340
Enlace del recurso:http://repositorio.uch.edu.pe/handle/uch/340
https://ieeexplore.ieee.org/abstract/document/7833415
http://dx.doi.org/10.1109/CLEI.2016.7833415
Nivel de acceso:acceso embargado
Materia:Intelligent systems
Mathematical models
Low incomes
Nephropathy
Type-2 diabetes
Urban zones
Vulnerable groups
Monte Carlo methods
Descripción
Sumario:From a sample of 1K type-2 diabetes cases, using Monte Carlo simulation and real data, we have estimated that a 2.5% might be potential candidates in being in the highest levels of progress of type-2 diabetes as manifested in nephropathy or necrosis, In addition, a 1 % of the sample might be highly sensitive to cardiovascular attack. The pattern of the sample is characterized by having low incomes per month, poor education to improve lifestyle, as well as the lack of contact with health specialist, among others. The results of this simulation might serve to reconfigure ongoing schemes of public health aiming to reduce diabetes complications and extend minimally the lifetime of those type-2 diabetes patients belonging to vulnerable groups.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).