Monte Carlo simulation for prediction of worsening conditions of type-2 diabetes patients at peri-urban zones of lima city

Descripción del Articulo

From a sample of 1K type-2 diabetes cases, using Monte Carlo simulation and real data, we have estimated that a 2.5% might be potential candidates in being in the highest levels of progress of type-2 diabetes as manifested in nephropathy or necrosis, In addition, a 1 % of the sample might be highly...

Descripción completa

Detalles Bibliográficos
Autor: Nieto Chaupis, Huber
Formato: objeto de conferencia
Fecha de Publicación:2016
Institución:Universidad de Ciencias y Humanidades
Repositorio:UCH-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.uch.edu.pe:uch/340
Enlace del recurso:http://repositorio.uch.edu.pe/handle/uch/340
https://ieeexplore.ieee.org/abstract/document/7833415
http://dx.doi.org/10.1109/CLEI.2016.7833415
Nivel de acceso:acceso embargado
Materia:Intelligent systems
Mathematical models
Low incomes
Nephropathy
Type-2 diabetes
Urban zones
Vulnerable groups
Monte Carlo methods
id UUCH_31b48230372bfa596e85bb87b8f8ff91
oai_identifier_str oai:repositorio.uch.edu.pe:uch/340
network_acronym_str UUCH
network_name_str UCH-Institucional
repository_id_str 4783
spelling Nieto Chaupis, Huber10 October 2016 through 14 October 20162019-08-18T22:07:22Z2019-08-18T22:07:22Z2016-10Nieto Chaupis, H. (Octubre, 2016). Monte Carlo simulation for prediction of worsening conditions of type-2 diabetes patients at peri-urban zones of lima city. En XLII Latin American Computing Conference (CLEI), Perú.http://repositorio.uch.edu.pe/handle/uch/340https://ieeexplore.ieee.org/abstract/document/7833415http://dx.doi.org/10.1109/CLEI.2016.783341510.1109/CLEI.2016.7833415Latin American Computing Conference, CLEI2-s2.0-85013874877From a sample of 1K type-2 diabetes cases, using Monte Carlo simulation and real data, we have estimated that a 2.5% might be potential candidates in being in the highest levels of progress of type-2 diabetes as manifested in nephropathy or necrosis, In addition, a 1 % of the sample might be highly sensitive to cardiovascular attack. The pattern of the sample is characterized by having low incomes per month, poor education to improve lifestyle, as well as the lack of contact with health specialist, among others. The results of this simulation might serve to reconfigure ongoing schemes of public health aiming to reduce diabetes complications and extend minimally the lifetime of those type-2 diabetes patients belonging to vulnerable groups.Submitted by sistemas uch (sistemas@uch.edu.pe) on 2019-08-18T22:07:22Z No. of bitstreams: 1 REPOSITORIO.pdf: 29656 bytes, checksum: 04319d67592b306412ce804f495f0004 (MD5)Made available in DSpace on 2019-08-18T22:07:22Z (GMT). No. of bitstreams: 1 REPOSITORIO.pdf: 29656 bytes, checksum: 04319d67592b306412ce804f495f0004 (MD5) Previous issue date: 2016-10Accenture;CONICYT;et al.;NIC Chile;RyC Consultores Asociados;Telefonica I+DengInstitute of Electrical and Electronics Engineers Inc.info:eu-repo/semantics/article42nd Latin American Computing Conference, CLEI 2016info:eu-repo/semantics/embargoedAccessRepositorio Institucional - UCHUniversidad de Ciencias y Humanidadesreponame:UCH-Institucionalinstname:Universidad de Ciencias y Humanidadesinstacron:UCHIntelligent systemsMathematical modelsLow incomesNephropathyType-2 diabetesUrban zonesVulnerable groupsMonte Carlo methodsMonte Carlo simulation for prediction of worsening conditions of type-2 diabetes patients at peri-urban zones of lima cityinfo:eu-repo/semantics/conferenceObjectuch/340oai:repositorio.uch.edu.pe:uch/3402019-12-20 18:34:00.775Repositorio UCHuch.dspace@gmail.com
dc.title.en_PE.fl_str_mv Monte Carlo simulation for prediction of worsening conditions of type-2 diabetes patients at peri-urban zones of lima city
title Monte Carlo simulation for prediction of worsening conditions of type-2 diabetes patients at peri-urban zones of lima city
spellingShingle Monte Carlo simulation for prediction of worsening conditions of type-2 diabetes patients at peri-urban zones of lima city
Nieto Chaupis, Huber
Intelligent systems
Mathematical models
Low incomes
Nephropathy
Type-2 diabetes
Urban zones
Vulnerable groups
Monte Carlo methods
title_short Monte Carlo simulation for prediction of worsening conditions of type-2 diabetes patients at peri-urban zones of lima city
title_full Monte Carlo simulation for prediction of worsening conditions of type-2 diabetes patients at peri-urban zones of lima city
title_fullStr Monte Carlo simulation for prediction of worsening conditions of type-2 diabetes patients at peri-urban zones of lima city
title_full_unstemmed Monte Carlo simulation for prediction of worsening conditions of type-2 diabetes patients at peri-urban zones of lima city
title_sort Monte Carlo simulation for prediction of worsening conditions of type-2 diabetes patients at peri-urban zones of lima city
author Nieto Chaupis, Huber
author_facet Nieto Chaupis, Huber
author_role author
dc.contributor.author.fl_str_mv Nieto Chaupis, Huber
dc.subject.en.fl_str_mv Intelligent systems
Mathematical models
Low incomes
Nephropathy
Type-2 diabetes
Urban zones
Vulnerable groups
Monte Carlo methods
topic Intelligent systems
Mathematical models
Low incomes
Nephropathy
Type-2 diabetes
Urban zones
Vulnerable groups
Monte Carlo methods
description From a sample of 1K type-2 diabetes cases, using Monte Carlo simulation and real data, we have estimated that a 2.5% might be potential candidates in being in the highest levels of progress of type-2 diabetes as manifested in nephropathy or necrosis, In addition, a 1 % of the sample might be highly sensitive to cardiovascular attack. The pattern of the sample is characterized by having low incomes per month, poor education to improve lifestyle, as well as the lack of contact with health specialist, among others. The results of this simulation might serve to reconfigure ongoing schemes of public health aiming to reduce diabetes complications and extend minimally the lifetime of those type-2 diabetes patients belonging to vulnerable groups.
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2019-08-18T22:07:22Z
dc.date.available.none.fl_str_mv 2019-08-18T22:07:22Z
dc.date.issued.fl_str_mv 2016-10
dc.type.en_PE.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.citation.en_PE.fl_str_mv Nieto Chaupis, H. (Octubre, 2016). Monte Carlo simulation for prediction of worsening conditions of type-2 diabetes patients at peri-urban zones of lima city. En XLII Latin American Computing Conference (CLEI), Perú.
dc.identifier.uri.none.fl_str_mv http://repositorio.uch.edu.pe/handle/uch/340
https://ieeexplore.ieee.org/abstract/document/7833415
http://dx.doi.org/10.1109/CLEI.2016.7833415
dc.identifier.doi.en_PE.fl_str_mv 10.1109/CLEI.2016.7833415
dc.identifier.journal.en_PE.fl_str_mv Latin American Computing Conference, CLEI
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85013874877
identifier_str_mv Nieto Chaupis, H. (Octubre, 2016). Monte Carlo simulation for prediction of worsening conditions of type-2 diabetes patients at peri-urban zones of lima city. En XLII Latin American Computing Conference (CLEI), Perú.
10.1109/CLEI.2016.7833415
Latin American Computing Conference, CLEI
2-s2.0-85013874877
url http://repositorio.uch.edu.pe/handle/uch/340
https://ieeexplore.ieee.org/abstract/document/7833415
http://dx.doi.org/10.1109/CLEI.2016.7833415
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.en_PE.fl_str_mv info:eu-repo/semantics/article
dc.relation.ispartof.none.fl_str_mv 42nd Latin American Computing Conference, CLEI 2016
dc.rights.en_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.coverage.temporal.none.fl_str_mv 10 October 2016 through 14 October 2016
dc.publisher.en_PE.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.en_PE.fl_str_mv Repositorio Institucional - UCH
Universidad de Ciencias y Humanidades
dc.source.none.fl_str_mv reponame:UCH-Institucional
instname:Universidad de Ciencias y Humanidades
instacron:UCH
instname_str Universidad de Ciencias y Humanidades
instacron_str UCH
institution UCH
reponame_str UCH-Institucional
collection UCH-Institucional
repository.name.fl_str_mv Repositorio UCH
repository.mail.fl_str_mv uch.dspace@gmail.com
_version_ 1835549006959214592
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).