Human detection on antistatic floors
Descripción del Articulo
Nowadays, a correct detection of people is very important for different purposes. Most applications use images as sources of information. However, an image may contain more information than is necessary for the detection task. For this reason, raw video images can end up being used for malicious pur...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Tecnológica del Perú |
Repositorio: | UTP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/7807 |
Enlace del recurso: | https://hdl.handle.net/20.500.12867/7807 https://doi.org/10.1016/j.iswa.2023.200254 |
Nivel de acceso: | acceso abierto |
Materia: | Deep learning Long-short term memory Electric discharges Human detection https://purl.org/pe-repo/ocde/ford#1.02.01 |
id |
UTPD_f3b8be7a7f3a3efd2cdf020441ffbe00 |
---|---|
oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/7807 |
network_acronym_str |
UTPD |
network_name_str |
UTP-Institucional |
repository_id_str |
4782 |
dc.title.es_PE.fl_str_mv |
Human detection on antistatic floors |
title |
Human detection on antistatic floors |
spellingShingle |
Human detection on antistatic floors Paiva Peredo, Ernesto Alonso Deep learning Long-short term memory Electric discharges Human detection https://purl.org/pe-repo/ocde/ford#1.02.01 |
title_short |
Human detection on antistatic floors |
title_full |
Human detection on antistatic floors |
title_fullStr |
Human detection on antistatic floors |
title_full_unstemmed |
Human detection on antistatic floors |
title_sort |
Human detection on antistatic floors |
author |
Paiva Peredo, Ernesto Alonso |
author_facet |
Paiva Peredo, Ernesto Alonso Vaghi, Alessandro Montú, Gianluca Bucher, Roberto |
author_role |
author |
author2 |
Vaghi, Alessandro Montú, Gianluca Bucher, Roberto |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Paiva Peredo, Ernesto Alonso Vaghi, Alessandro Montú, Gianluca Bucher, Roberto |
dc.subject.es_PE.fl_str_mv |
Deep learning Long-short term memory Electric discharges Human detection |
topic |
Deep learning Long-short term memory Electric discharges Human detection https://purl.org/pe-repo/ocde/ford#1.02.01 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.01 |
description |
Nowadays, a correct detection of people is very important for different purposes. Most applications use images as sources of information. However, an image may contain more information than is necessary for the detection task. For this reason, raw video images can end up being used for malicious purposes or privacy concerns. We present baseline results for a new human detection task. We evaluate long short-term memory (LSTM)-based deep learning models for detecting people using electrical signals from electrostatic discharge (ESD) floors as a source of information. Statistical features were provided to the models every second and four classification problems were studied. The first model discriminates between motion and non-motion. A second model classifies the action of the person between: no person, walking or standing. A third model classifies between walking and standing. And a last model predicts whether there is someone or no one on the ESD floor. Mattews Correlation Coefficient (MCC) was used as the main metric to evaluate the performance of the models. The LSTM models obtained a MCC between 0.94 and 0.99. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-10-27T18:34:09Z |
dc.date.available.none.fl_str_mv |
2023-10-27T18:34:09Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2667-3053 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/7807 |
dc.identifier.journal.es_PE.fl_str_mv |
Intelligent Systems with Applications |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.iswa.2023.200254 |
identifier_str_mv |
2667-3053 Intelligent Systems with Applications |
url |
https://hdl.handle.net/20.500.12867/7807 https://doi.org/10.1016/j.iswa.2023.200254 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.none.fl_str_mv |
Intelligent Systems with Applications;vol. 19 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Elsevier |
dc.publisher.country.es_PE.fl_str_mv |
NL |
dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
instname_str |
Universidad Tecnológica del Perú |
instacron_str |
UTP |
institution |
UTP |
reponame_str |
UTP-Institucional |
collection |
UTP-Institucional |
bitstream.url.fl_str_mv |
http://repositorio.utp.edu.pe/bitstream/20.500.12867/7807/2/license.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/7807/3/E.Paiva_Articulo_2023.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/7807/4/E.Paiva_Articulo_2023.pdf.jpg http://repositorio.utp.edu.pe/bitstream/20.500.12867/7807/1/E.Paiva_Articulo_2023.pdf |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 dedba0a642f600af59469c9e72957280 219d4cbb24edb89c32a53c495777898c f1669d164426dfb29e2022d0245c2c29 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Tecnológica del Perú |
repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
_version_ |
1817984900169465856 |
spelling |
Paiva Peredo, Ernesto AlonsoVaghi, AlessandroMontú, GianlucaBucher, Roberto2023-10-27T18:34:09Z2023-10-27T18:34:09Z20232667-3053https://hdl.handle.net/20.500.12867/7807Intelligent Systems with Applicationshttps://doi.org/10.1016/j.iswa.2023.200254Nowadays, a correct detection of people is very important for different purposes. Most applications use images as sources of information. However, an image may contain more information than is necessary for the detection task. For this reason, raw video images can end up being used for malicious purposes or privacy concerns. We present baseline results for a new human detection task. We evaluate long short-term memory (LSTM)-based deep learning models for detecting people using electrical signals from electrostatic discharge (ESD) floors as a source of information. Statistical features were provided to the models every second and four classification problems were studied. The first model discriminates between motion and non-motion. A second model classifies the action of the person between: no person, walking or standing. A third model classifies between walking and standing. And a last model predicts whether there is someone or no one on the ESD floor. Mattews Correlation Coefficient (MCC) was used as the main metric to evaluate the performance of the models. The LSTM models obtained a MCC between 0.94 and 0.99.Campus Lima Centroapplication/pdfengElsevierNLIntelligent Systems with Applications;vol. 19info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPDeep learningLong-short term memoryElectric dischargesHuman detectionhttps://purl.org/pe-repo/ocde/ford#1.02.01Human detection on antistatic floorsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/7807/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTE.Paiva_Articulo_2023.pdf.txtE.Paiva_Articulo_2023.pdf.txtExtracted texttext/plain38934http://repositorio.utp.edu.pe/bitstream/20.500.12867/7807/3/E.Paiva_Articulo_2023.pdf.txtdedba0a642f600af59469c9e72957280MD53THUMBNAILE.Paiva_Articulo_2023.pdf.jpgE.Paiva_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg21461http://repositorio.utp.edu.pe/bitstream/20.500.12867/7807/4/E.Paiva_Articulo_2023.pdf.jpg219d4cbb24edb89c32a53c495777898cMD54ORIGINALE.Paiva_Articulo_2023.pdfE.Paiva_Articulo_2023.pdfapplication/pdf2952834http://repositorio.utp.edu.pe/bitstream/20.500.12867/7807/1/E.Paiva_Articulo_2023.pdff1669d164426dfb29e2022d0245c2c29MD5120.500.12867/7807oai:repositorio.utp.edu.pe:20.500.12867/78072023-10-27 14:04:46.147Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.958958 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).