Human detection on antistatic floors

Descripción del Articulo

Nowadays, a correct detection of people is very important for different purposes. Most applications use images as sources of information. However, an image may contain more information than is necessary for the detection task. For this reason, raw video images can end up being used for malicious pur...

Descripción completa

Detalles Bibliográficos
Autores: Paiva Peredo, Ernesto Alonso, Vaghi, Alessandro, Montú, Gianluca, Bucher, Roberto
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/7807
Enlace del recurso:https://hdl.handle.net/20.500.12867/7807
https://doi.org/10.1016/j.iswa.2023.200254
Nivel de acceso:acceso abierto
Materia:Deep learning
Long-short term memory
Electric discharges
Human detection
https://purl.org/pe-repo/ocde/ford#1.02.01
Descripción
Sumario:Nowadays, a correct detection of people is very important for different purposes. Most applications use images as sources of information. However, an image may contain more information than is necessary for the detection task. For this reason, raw video images can end up being used for malicious purposes or privacy concerns. We present baseline results for a new human detection task. We evaluate long short-term memory (LSTM)-based deep learning models for detecting people using electrical signals from electrostatic discharge (ESD) floors as a source of information. Statistical features were provided to the models every second and four classification problems were studied. The first model discriminates between motion and non-motion. A second model classifies the action of the person between: no person, walking or standing. A third model classifies between walking and standing. And a last model predicts whether there is someone or no one on the ESD floor. Mattews Correlation Coefficient (MCC) was used as the main metric to evaluate the performance of the models. The LSTM models obtained a MCC between 0.94 and 0.99.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).