A note on strongly δθ-I-continuous functions

Descripción del Articulo

The concept of an ideal on a topological space (nowadays called a topological ideal) has played a fundamental role in several of the advances in general topology. In the last century, a large number of works have arisen that have enriched the literature related to the concept of topological ideal. V...

Descripción completa

Detalles Bibliográficos
Autores: Lozada Yavina, Rafael Alejandro, Sanabria, José, Tormet, José
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/5812
Enlace del recurso:https://hdl.handle.net/20.500.12867/5812
https://doi.org/10.29020/nybg.ejpam.v15i2.4317
Nivel de acceso:acceso abierto
Materia:Strong continuous functions
Functions
https://purl.org/pe-repo/ocde/ford#1.01.00
id UTPD_e1f0e3466e122a698c1c1a66044dd170
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/5812
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv A note on strongly δθ-I-continuous functions
title A note on strongly δθ-I-continuous functions
spellingShingle A note on strongly δθ-I-continuous functions
Lozada Yavina, Rafael Alejandro
Strong continuous functions
Functions
https://purl.org/pe-repo/ocde/ford#1.01.00
title_short A note on strongly δθ-I-continuous functions
title_full A note on strongly δθ-I-continuous functions
title_fullStr A note on strongly δθ-I-continuous functions
title_full_unstemmed A note on strongly δθ-I-continuous functions
title_sort A note on strongly δθ-I-continuous functions
author Lozada Yavina, Rafael Alejandro
author_facet Lozada Yavina, Rafael Alejandro
Sanabria, José
Tormet, José
author_role author
author2 Sanabria, José
Tormet, José
author2_role author
author
dc.contributor.author.fl_str_mv Lozada Yavina, Rafael Alejandro
Sanabria, José
Tormet, José
dc.subject.es_PE.fl_str_mv Strong continuous functions
Functions
topic Strong continuous functions
Functions
https://purl.org/pe-repo/ocde/ford#1.01.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.00
description The concept of an ideal on a topological space (nowadays called a topological ideal) has played a fundamental role in several of the advances in general topology. In the last century, a large number of works have arisen that have enriched the literature related to the concept of topological ideal. Very recently, topological ideals have again received special attention for their versatility in tackling topology problems and in studying rough set models, as we can see in the references [19], [7], [3], [12], [16], [5], [9], [10]. In 2014, Hatir and Al-Omari [8] introduced the concept of []-local function and studied some of its most relevant properties. The study carried out in [8] served as motivation to define the class of the [][]-I -open sets in [11], which was later used in [14] to introduce new variants of continuous functions, called [][]-I-continuous, weakly []-J -continuous and strongly [][]-I-continuous functions. In this article, we study and characterize the strongly [][]-I-continuous functions, we investigate their relationship with other types of functions, and also, we explore the behavior of some topological notions under these classes of functions.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-27T17:21:10Z
dc.date.available.none.fl_str_mv 2022-07-27T17:21:10Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1307-5543
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/5812
dc.identifier.journal.es_PE.fl_str_mv European Journal of Pure and Applied Mathematics
dc.identifier.doi.none.fl_str_mv https://doi.org/10.29020/nybg.ejpam.v15i2.4317
identifier_str_mv 1307-5543
European Journal of Pure and Applied Mathematics
url https://hdl.handle.net/20.500.12867/5812
https://doi.org/10.29020/nybg.ejpam.v15i2.4317
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartofseries.none.fl_str_mv European Journal of Pure and Applied Mathematics;vol. 15, n° 2, pp. 443 - 453
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv New York Business Global
dc.publisher.country.es_PE.fl_str_mv US
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/5812/1/R.Lozada_EJPAM_Articulos_eng_2022.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5812/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5812/3/R.Lozada_EJPAM_Articulos_eng_2022.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5812/4/R.Lozada_EJPAM_Articulos_eng_2022.pdf.jpg
bitstream.checksum.fl_str_mv ac9bff597b0dbd220b1e0f0b221a2c3f
8a4605be74aa9ea9d79846c1fba20a33
22eb072c6a5f19a627b739a59f88e355
4f1c6d33b5fada6802492a3e6394e7bc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984929994113024
spelling Lozada Yavina, Rafael AlejandroSanabria, JoséTormet, José2022-07-27T17:21:10Z2022-07-27T17:21:10Z20221307-5543https://hdl.handle.net/20.500.12867/5812European Journal of Pure and Applied Mathematicshttps://doi.org/10.29020/nybg.ejpam.v15i2.4317The concept of an ideal on a topological space (nowadays called a topological ideal) has played a fundamental role in several of the advances in general topology. In the last century, a large number of works have arisen that have enriched the literature related to the concept of topological ideal. Very recently, topological ideals have again received special attention for their versatility in tackling topology problems and in studying rough set models, as we can see in the references [19], [7], [3], [12], [16], [5], [9], [10]. In 2014, Hatir and Al-Omari [8] introduced the concept of []-local function and studied some of its most relevant properties. The study carried out in [8] served as motivation to define the class of the [][]-I -open sets in [11], which was later used in [14] to introduce new variants of continuous functions, called [][]-I-continuous, weakly []-J -continuous and strongly [][]-I-continuous functions. In this article, we study and characterize the strongly [][]-I-continuous functions, we investigate their relationship with other types of functions, and also, we explore the behavior of some topological notions under these classes of functions.Campus San Juan de Luriganchoapplication/pdfspaNew York Business GlobalUSEuropean Journal of Pure and Applied Mathematics;vol. 15, n° 2, pp. 443 - 453info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPStrong continuous functionsFunctionshttps://purl.org/pe-repo/ocde/ford#1.01.00A note on strongly δθ-I-continuous functionsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALR.Lozada_EJPAM_Articulos_eng_2022.pdfR.Lozada_EJPAM_Articulos_eng_2022.pdfapplication/pdf360667http://repositorio.utp.edu.pe/bitstream/20.500.12867/5812/1/R.Lozada_EJPAM_Articulos_eng_2022.pdfac9bff597b0dbd220b1e0f0b221a2c3fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/5812/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTR.Lozada_EJPAM_Articulos_eng_2022.pdf.txtR.Lozada_EJPAM_Articulos_eng_2022.pdf.txtExtracted texttext/plain29830http://repositorio.utp.edu.pe/bitstream/20.500.12867/5812/3/R.Lozada_EJPAM_Articulos_eng_2022.pdf.txt22eb072c6a5f19a627b739a59f88e355MD53THUMBNAILR.Lozada_EJPAM_Articulos_eng_2022.pdf.jpgR.Lozada_EJPAM_Articulos_eng_2022.pdf.jpgGenerated Thumbnailimage/jpeg17888http://repositorio.utp.edu.pe/bitstream/20.500.12867/5812/4/R.Lozada_EJPAM_Articulos_eng_2022.pdf.jpg4f1c6d33b5fada6802492a3e6394e7bcMD5420.500.12867/5812oai:repositorio.utp.edu.pe:20.500.12867/58122022-08-06 17:04:08.176Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.971837
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).