A note on strongly δθ-I-continuous functions
Descripción del Articulo
The concept of an ideal on a topological space (nowadays called a topological ideal) has played a fundamental role in several of the advances in general topology. In the last century, a large number of works have arisen that have enriched the literature related to the concept of topological ideal. V...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Tecnológica del Perú |
Repositorio: | UTP-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/5812 |
Enlace del recurso: | https://hdl.handle.net/20.500.12867/5812 https://doi.org/10.29020/nybg.ejpam.v15i2.4317 |
Nivel de acceso: | acceso abierto |
Materia: | Strong continuous functions Functions https://purl.org/pe-repo/ocde/ford#1.01.00 |
id |
UTPD_e1f0e3466e122a698c1c1a66044dd170 |
---|---|
oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/5812 |
network_acronym_str |
UTPD |
network_name_str |
UTP-Institucional |
repository_id_str |
4782 |
dc.title.es_PE.fl_str_mv |
A note on strongly δθ-I-continuous functions |
title |
A note on strongly δθ-I-continuous functions |
spellingShingle |
A note on strongly δθ-I-continuous functions Lozada Yavina, Rafael Alejandro Strong continuous functions Functions https://purl.org/pe-repo/ocde/ford#1.01.00 |
title_short |
A note on strongly δθ-I-continuous functions |
title_full |
A note on strongly δθ-I-continuous functions |
title_fullStr |
A note on strongly δθ-I-continuous functions |
title_full_unstemmed |
A note on strongly δθ-I-continuous functions |
title_sort |
A note on strongly δθ-I-continuous functions |
author |
Lozada Yavina, Rafael Alejandro |
author_facet |
Lozada Yavina, Rafael Alejandro Sanabria, José Tormet, José |
author_role |
author |
author2 |
Sanabria, José Tormet, José |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Lozada Yavina, Rafael Alejandro Sanabria, José Tormet, José |
dc.subject.es_PE.fl_str_mv |
Strong continuous functions Functions |
topic |
Strong continuous functions Functions https://purl.org/pe-repo/ocde/ford#1.01.00 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.00 |
description |
The concept of an ideal on a topological space (nowadays called a topological ideal) has played a fundamental role in several of the advances in general topology. In the last century, a large number of works have arisen that have enriched the literature related to the concept of topological ideal. Very recently, topological ideals have again received special attention for their versatility in tackling topology problems and in studying rough set models, as we can see in the references [19], [7], [3], [12], [16], [5], [9], [10]. In 2014, Hatir and Al-Omari [8] introduced the concept of []-local function and studied some of its most relevant properties. The study carried out in [8] served as motivation to define the class of the [][]-I -open sets in [11], which was later used in [14] to introduce new variants of continuous functions, called [][]-I-continuous, weakly []-J -continuous and strongly [][]-I-continuous functions. In this article, we study and characterize the strongly [][]-I-continuous functions, we investigate their relationship with other types of functions, and also, we explore the behavior of some topological notions under these classes of functions. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-07-27T17:21:10Z |
dc.date.available.none.fl_str_mv |
2022-07-27T17:21:10Z |
dc.date.issued.fl_str_mv |
2022 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1307-5543 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/5812 |
dc.identifier.journal.es_PE.fl_str_mv |
European Journal of Pure and Applied Mathematics |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.29020/nybg.ejpam.v15i2.4317 |
identifier_str_mv |
1307-5543 European Journal of Pure and Applied Mathematics |
url |
https://hdl.handle.net/20.500.12867/5812 https://doi.org/10.29020/nybg.ejpam.v15i2.4317 |
dc.language.iso.es_PE.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofseries.none.fl_str_mv |
European Journal of Pure and Applied Mathematics;vol. 15, n° 2, pp. 443 - 453 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
New York Business Global |
dc.publisher.country.es_PE.fl_str_mv |
US |
dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
instname_str |
Universidad Tecnológica del Perú |
instacron_str |
UTP |
institution |
UTP |
reponame_str |
UTP-Institucional |
collection |
UTP-Institucional |
bitstream.url.fl_str_mv |
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5812/1/R.Lozada_EJPAM_Articulos_eng_2022.pdf http://repositorio.utp.edu.pe/bitstream/20.500.12867/5812/2/license.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/5812/3/R.Lozada_EJPAM_Articulos_eng_2022.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/5812/4/R.Lozada_EJPAM_Articulos_eng_2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
ac9bff597b0dbd220b1e0f0b221a2c3f 8a4605be74aa9ea9d79846c1fba20a33 22eb072c6a5f19a627b739a59f88e355 4f1c6d33b5fada6802492a3e6394e7bc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Tecnológica del Perú |
repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
_version_ |
1817984929994113024 |
spelling |
Lozada Yavina, Rafael AlejandroSanabria, JoséTormet, José2022-07-27T17:21:10Z2022-07-27T17:21:10Z20221307-5543https://hdl.handle.net/20.500.12867/5812European Journal of Pure and Applied Mathematicshttps://doi.org/10.29020/nybg.ejpam.v15i2.4317The concept of an ideal on a topological space (nowadays called a topological ideal) has played a fundamental role in several of the advances in general topology. In the last century, a large number of works have arisen that have enriched the literature related to the concept of topological ideal. Very recently, topological ideals have again received special attention for their versatility in tackling topology problems and in studying rough set models, as we can see in the references [19], [7], [3], [12], [16], [5], [9], [10]. In 2014, Hatir and Al-Omari [8] introduced the concept of []-local function and studied some of its most relevant properties. The study carried out in [8] served as motivation to define the class of the [][]-I -open sets in [11], which was later used in [14] to introduce new variants of continuous functions, called [][]-I-continuous, weakly []-J -continuous and strongly [][]-I-continuous functions. In this article, we study and characterize the strongly [][]-I-continuous functions, we investigate their relationship with other types of functions, and also, we explore the behavior of some topological notions under these classes of functions.Campus San Juan de Luriganchoapplication/pdfspaNew York Business GlobalUSEuropean Journal of Pure and Applied Mathematics;vol. 15, n° 2, pp. 443 - 453info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPStrong continuous functionsFunctionshttps://purl.org/pe-repo/ocde/ford#1.01.00A note on strongly δθ-I-continuous functionsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALR.Lozada_EJPAM_Articulos_eng_2022.pdfR.Lozada_EJPAM_Articulos_eng_2022.pdfapplication/pdf360667http://repositorio.utp.edu.pe/bitstream/20.500.12867/5812/1/R.Lozada_EJPAM_Articulos_eng_2022.pdfac9bff597b0dbd220b1e0f0b221a2c3fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/5812/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTR.Lozada_EJPAM_Articulos_eng_2022.pdf.txtR.Lozada_EJPAM_Articulos_eng_2022.pdf.txtExtracted texttext/plain29830http://repositorio.utp.edu.pe/bitstream/20.500.12867/5812/3/R.Lozada_EJPAM_Articulos_eng_2022.pdf.txt22eb072c6a5f19a627b739a59f88e355MD53THUMBNAILR.Lozada_EJPAM_Articulos_eng_2022.pdf.jpgR.Lozada_EJPAM_Articulos_eng_2022.pdf.jpgGenerated Thumbnailimage/jpeg17888http://repositorio.utp.edu.pe/bitstream/20.500.12867/5812/4/R.Lozada_EJPAM_Articulos_eng_2022.pdf.jpg4f1c6d33b5fada6802492a3e6394e7bcMD5420.500.12867/5812oai:repositorio.utp.edu.pe:20.500.12867/58122022-08-06 17:04:08.176Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.971837 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).