Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators

Descripción del Articulo

In the last decades, the accumulation of municipal solid waste in urban areas has become a latent concern in our society due to its implications for the exposed population and the possible health and environmental issues it may cause. In this sense, this research study contributes to the timely iden...

Descripción completa

Detalles Bibliográficos
Autores: Izquierdo Horna, Luis Antonio, Damaso Amante, Miker, Yanayaco Lazo, Deyvis Junior
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/5837
Enlace del recurso:https://hdl.handle.net/20.500.12867/5837
http://doi.org/10.1016/j.compenvurbsys.2022.101834
Nivel de acceso:acceso abierto
Materia:Machine learning
Waste management
Social indicators
https://purl.org/pe-repo/ocde/ford#2.08.02
id UTPD_d0e8a3f2b5ceedea86dcbe85233f02a0
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/5837
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators
title Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators
spellingShingle Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators
Izquierdo Horna, Luis Antonio
Machine learning
Waste management
Social indicators
https://purl.org/pe-repo/ocde/ford#2.08.02
title_short Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators
title_full Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators
title_fullStr Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators
title_full_unstemmed Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators
title_sort Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators
author Izquierdo Horna, Luis Antonio
author_facet Izquierdo Horna, Luis Antonio
Damaso Amante, Miker
Yanayaco Lazo, Deyvis Junior
author_role author
author2 Damaso Amante, Miker
Yanayaco Lazo, Deyvis Junior
author2_role author
author
dc.contributor.author.fl_str_mv Izquierdo Horna, Luis Antonio
Damaso Amante, Miker
Yanayaco Lazo, Deyvis Junior
dc.subject.es_PE.fl_str_mv Machine learning
Waste management
Social indicators
topic Machine learning
Waste management
Social indicators
https://purl.org/pe-repo/ocde/ford#2.08.02
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.08.02
description In the last decades, the accumulation of municipal solid waste in urban areas has become a latent concern in our society due to its implications for the exposed population and the possible health and environmental issues it may cause. In this sense, this research study contributes to the timely identification of these sectors according to the anthropogenic characteristics of their residents as dictated by 10 social indicators (i.e., age, education, income, among others) sorted into three assessment categories (sociodemographic, sociocultural, and socioeconomic). Then, the data collected was processed and analyzed using two machine learning algorithms (random forest (RF) and logistic regression (LR)). The primary information that fed the machine learning model was collected through field visits and local/national reports. For this research, the Puente Piedra and Chaclacayo districts, both located in the province of Lima, Peru, were selected as case studies. Results suggest that the most relevant social indicators that help identifying these sectors are monthly income, consumption patterns, age, and household population density. The experiments showed that the RF algorithm has the best performance, since it efficiently identified 63% of the possible solid waste accumulation zones. In addition, both models were capable of determining different classes (AUC – RF = 0.65, AUC – LR = 0.71). Finally, the proposed approach is applicable and reproducible in different sectors of the national Peruvian territory.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-27T21:21:15Z
dc.date.available.none.fl_str_mv 2022-07-27T21:21:15Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0198-9715
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/5837
dc.identifier.journal.es_PE.fl_str_mv Computers, Environment and Urban Systems
dc.identifier.doi.none.fl_str_mv http://doi.org/10.1016/j.compenvurbsys.2022.101834
identifier_str_mv 0198-9715
Computers, Environment and Urban Systems
url https://hdl.handle.net/20.500.12867/5837
http://doi.org/10.1016/j.compenvurbsys.2022.101834
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv Computers, Environment and Urban Systems;vol. 96
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Elsevier
dc.publisher.country.es_PE.fl_str_mv GB
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/5837/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5837/1/L.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5837/3/L.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5837/4/L.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
127dc08177e0002ffa3b4e3aea18b47f
f9f3a12d30a2cd6c47fd251ebe9b7372
aeb440f920771c0f5344ae7378769ae4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984912320364544
spelling Izquierdo Horna, Luis AntonioDamaso Amante, MikerYanayaco Lazo, Deyvis Junior2022-07-27T21:21:15Z2022-07-27T21:21:15Z20220198-9715https://hdl.handle.net/20.500.12867/5837Computers, Environment and Urban Systemshttp://doi.org/10.1016/j.compenvurbsys.2022.101834In the last decades, the accumulation of municipal solid waste in urban areas has become a latent concern in our society due to its implications for the exposed population and the possible health and environmental issues it may cause. In this sense, this research study contributes to the timely identification of these sectors according to the anthropogenic characteristics of their residents as dictated by 10 social indicators (i.e., age, education, income, among others) sorted into three assessment categories (sociodemographic, sociocultural, and socioeconomic). Then, the data collected was processed and analyzed using two machine learning algorithms (random forest (RF) and logistic regression (LR)). The primary information that fed the machine learning model was collected through field visits and local/national reports. For this research, the Puente Piedra and Chaclacayo districts, both located in the province of Lima, Peru, were selected as case studies. Results suggest that the most relevant social indicators that help identifying these sectors are monthly income, consumption patterns, age, and household population density. The experiments showed that the RF algorithm has the best performance, since it efficiently identified 63% of the possible solid waste accumulation zones. In addition, both models were capable of determining different classes (AUC – RF = 0.65, AUC – LR = 0.71). Finally, the proposed approach is applicable and reproducible in different sectors of the national Peruvian territory.Campus Lima Centroapplication/pdfengElsevierGBComputers, Environment and Urban Systems;vol. 96info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine learningWaste managementSocial indicatorshttps://purl.org/pe-repo/ocde/ford#2.08.02Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicatorsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/5837/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALL.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdfL.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdfapplication/pdf6923024http://repositorio.utp.edu.pe/bitstream/20.500.12867/5837/1/L.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdf127dc08177e0002ffa3b4e3aea18b47fMD51TEXTL.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdf.txtL.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdf.txtExtracted texttext/plain48685http://repositorio.utp.edu.pe/bitstream/20.500.12867/5837/3/L.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdf.txtf9f3a12d30a2cd6c47fd251ebe9b7372MD53THUMBNAILL.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdf.jpgL.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdf.jpgGenerated Thumbnailimage/jpeg19945http://repositorio.utp.edu.pe/bitstream/20.500.12867/5837/4/L.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdf.jpgaeb440f920771c0f5344ae7378769ae4MD5420.500.12867/5837oai:repositorio.utp.edu.pe:20.500.12867/58372022-08-06 17:04:22.317Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.954718
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).