Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators
Descripción del Articulo
In the last decades, the accumulation of municipal solid waste in urban areas has become a latent concern in our society due to its implications for the exposed population and the possible health and environmental issues it may cause. In this sense, this research study contributes to the timely iden...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Tecnológica del Perú |
Repositorio: | UTP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/5837 |
Enlace del recurso: | https://hdl.handle.net/20.500.12867/5837 http://doi.org/10.1016/j.compenvurbsys.2022.101834 |
Nivel de acceso: | acceso abierto |
Materia: | Machine learning Waste management Social indicators https://purl.org/pe-repo/ocde/ford#2.08.02 |
id |
UTPD_d0e8a3f2b5ceedea86dcbe85233f02a0 |
---|---|
oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/5837 |
network_acronym_str |
UTPD |
network_name_str |
UTP-Institucional |
repository_id_str |
4782 |
dc.title.es_PE.fl_str_mv |
Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators |
title |
Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators |
spellingShingle |
Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators Izquierdo Horna, Luis Antonio Machine learning Waste management Social indicators https://purl.org/pe-repo/ocde/ford#2.08.02 |
title_short |
Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators |
title_full |
Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators |
title_fullStr |
Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators |
title_full_unstemmed |
Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators |
title_sort |
Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators |
author |
Izquierdo Horna, Luis Antonio |
author_facet |
Izquierdo Horna, Luis Antonio Damaso Amante, Miker Yanayaco Lazo, Deyvis Junior |
author_role |
author |
author2 |
Damaso Amante, Miker Yanayaco Lazo, Deyvis Junior |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Izquierdo Horna, Luis Antonio Damaso Amante, Miker Yanayaco Lazo, Deyvis Junior |
dc.subject.es_PE.fl_str_mv |
Machine learning Waste management Social indicators |
topic |
Machine learning Waste management Social indicators https://purl.org/pe-repo/ocde/ford#2.08.02 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.08.02 |
description |
In the last decades, the accumulation of municipal solid waste in urban areas has become a latent concern in our society due to its implications for the exposed population and the possible health and environmental issues it may cause. In this sense, this research study contributes to the timely identification of these sectors according to the anthropogenic characteristics of their residents as dictated by 10 social indicators (i.e., age, education, income, among others) sorted into three assessment categories (sociodemographic, sociocultural, and socioeconomic). Then, the data collected was processed and analyzed using two machine learning algorithms (random forest (RF) and logistic regression (LR)). The primary information that fed the machine learning model was collected through field visits and local/national reports. For this research, the Puente Piedra and Chaclacayo districts, both located in the province of Lima, Peru, were selected as case studies. Results suggest that the most relevant social indicators that help identifying these sectors are monthly income, consumption patterns, age, and household population density. The experiments showed that the RF algorithm has the best performance, since it efficiently identified 63% of the possible solid waste accumulation zones. In addition, both models were capable of determining different classes (AUC – RF = 0.65, AUC – LR = 0.71). Finally, the proposed approach is applicable and reproducible in different sectors of the national Peruvian territory. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-07-27T21:21:15Z |
dc.date.available.none.fl_str_mv |
2022-07-27T21:21:15Z |
dc.date.issued.fl_str_mv |
2022 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0198-9715 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/5837 |
dc.identifier.journal.es_PE.fl_str_mv |
Computers, Environment and Urban Systems |
dc.identifier.doi.none.fl_str_mv |
http://doi.org/10.1016/j.compenvurbsys.2022.101834 |
identifier_str_mv |
0198-9715 Computers, Environment and Urban Systems |
url |
https://hdl.handle.net/20.500.12867/5837 http://doi.org/10.1016/j.compenvurbsys.2022.101834 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.none.fl_str_mv |
Computers, Environment and Urban Systems;vol. 96 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Elsevier |
dc.publisher.country.es_PE.fl_str_mv |
GB |
dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
instname_str |
Universidad Tecnológica del Perú |
instacron_str |
UTP |
institution |
UTP |
reponame_str |
UTP-Institucional |
collection |
UTP-Institucional |
bitstream.url.fl_str_mv |
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5837/2/license.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/5837/1/L.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdf http://repositorio.utp.edu.pe/bitstream/20.500.12867/5837/3/L.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/5837/4/L.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 127dc08177e0002ffa3b4e3aea18b47f f9f3a12d30a2cd6c47fd251ebe9b7372 aeb440f920771c0f5344ae7378769ae4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Tecnológica del Perú |
repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
_version_ |
1817984912320364544 |
spelling |
Izquierdo Horna, Luis AntonioDamaso Amante, MikerYanayaco Lazo, Deyvis Junior2022-07-27T21:21:15Z2022-07-27T21:21:15Z20220198-9715https://hdl.handle.net/20.500.12867/5837Computers, Environment and Urban Systemshttp://doi.org/10.1016/j.compenvurbsys.2022.101834In the last decades, the accumulation of municipal solid waste in urban areas has become a latent concern in our society due to its implications for the exposed population and the possible health and environmental issues it may cause. In this sense, this research study contributes to the timely identification of these sectors according to the anthropogenic characteristics of their residents as dictated by 10 social indicators (i.e., age, education, income, among others) sorted into three assessment categories (sociodemographic, sociocultural, and socioeconomic). Then, the data collected was processed and analyzed using two machine learning algorithms (random forest (RF) and logistic regression (LR)). The primary information that fed the machine learning model was collected through field visits and local/national reports. For this research, the Puente Piedra and Chaclacayo districts, both located in the province of Lima, Peru, were selected as case studies. Results suggest that the most relevant social indicators that help identifying these sectors are monthly income, consumption patterns, age, and household population density. The experiments showed that the RF algorithm has the best performance, since it efficiently identified 63% of the possible solid waste accumulation zones. In addition, both models were capable of determining different classes (AUC – RF = 0.65, AUC – LR = 0.71). Finally, the proposed approach is applicable and reproducible in different sectors of the national Peruvian territory.Campus Lima Centroapplication/pdfengElsevierGBComputers, Environment and Urban Systems;vol. 96info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine learningWaste managementSocial indicatorshttps://purl.org/pe-repo/ocde/ford#2.08.02Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicatorsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/5837/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALL.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdfL.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdfapplication/pdf6923024http://repositorio.utp.edu.pe/bitstream/20.500.12867/5837/1/L.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdf127dc08177e0002ffa3b4e3aea18b47fMD51TEXTL.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdf.txtL.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdf.txtExtracted texttext/plain48685http://repositorio.utp.edu.pe/bitstream/20.500.12867/5837/3/L.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdf.txtf9f3a12d30a2cd6c47fd251ebe9b7372MD53THUMBNAILL.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdf.jpgL.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdf.jpgGenerated Thumbnailimage/jpeg19945http://repositorio.utp.edu.pe/bitstream/20.500.12867/5837/4/L.Izquierdo_M.Damazo_D.Yanayaco_CEUS_Articulo_spa_2022.pdf.jpgaeb440f920771c0f5344ae7378769ae4MD5420.500.12867/5837oai:repositorio.utp.edu.pe:20.500.12867/58372022-08-06 17:04:22.317Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.954718 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).