Clasificación óptima de los frutos de café por su madurez mediante algoritmo de control
Descripción del Articulo
La presente investigación tiene como propósito conocer en qué medida un sistema automático controlado por algoritmo, permite la clasificación óptima de los frutos de café según el grado de madurez identificándolos por su color. Para lo cual se desarrolló una red neuronal multicapa empleando MATLAB e...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Tecnológica del Perú |
Repositorio: | UTP-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/6353 |
Enlace del recurso: | https://hdl.handle.net/20.500.12867/6353 https://doi.org/10.33996/revistaalfa.v6i18.181 |
Nivel de acceso: | acceso abierto |
Materia: | Café Redes neuronales artificiales Algoritmos https://purl.org/pe-repo/ocde/ford#4.01.06 |
Sumario: | La presente investigación tiene como propósito conocer en qué medida un sistema automático controlado por algoritmo, permite la clasificación óptima de los frutos de café según el grado de madurez identificándolos por su color. Para lo cual se desarrolló una red neuronal multicapa empleando MATLAB el cual se implementó en un microcontrolador STM32F103C8, empleando como datos de entrada las características de modo de color RGB de 300 muestras de frutos de café en distintos estados de maduración, entregadas por un sensor de color TCS3200, que permitió contar con una base de datos de distintos niveles de madurez empleados para entrenar la red neuronal tipo multicapa con 3 entradas; 3 capas ocultas con 6 neuronas en la primera capa y 3 en las otras dos, así como una neurona en la capa de salida. Los datos fueron organizados de acuerdo al estado de madurez de los frutos, en “Madurez óptima” o “Madurez No Óptima”. Se probó el sistema con 60 frutos de café, consiguiendo como resultado una eficiencia del 96,67% y un porcentaje de error de 3,33%; confirmando así, que el sistema de clasificación mediante el control del algoritmo y red neuronal multicapa diseñado, identifica y clasifica en base a la madurez de los frutos de café manera óptima. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).