Human resource optimization using linear regression machine learning model: case study SUNAT

Descripción del Articulo

The continue searching for organization’s process improvement for reduce cost and increase efficiency is a big challenge for organizations nowadays. This paper is about to recognize the importance of process improvement focusing in the right human resource allocation. The research predict best optim...

Descripción completa

Detalles Bibliográficos
Autores: Palomino Vidal, Carlos Efraín, Salazar Marín, Gloria, Condori Obregon, Patricia
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/7232
Enlace del recurso:https://hdl.handle.net/20.500.12867/7232
http://doi.org/ 10.11591/ijeecs.v31.i1.pp386-391
Nivel de acceso:acceso abierto
Materia:Human talent management
Machine learning
Predictive modelling
https://purl.org/pe-repo/ocde/ford#5.02.04
https://purl.org/pe-repo/ocde/ford#1.02.00
Descripción
Sumario:The continue searching for organization’s process improvement for reduce cost and increase efficiency is a big challenge for organizations nowadays. This paper is about to recognize the importance of process improvement focusing in the right human resource allocation. The research predict best optime human resource allocation in the Superintendencia Nacional de Aduanas (SUNAT) in the chemical materials control area using a linear regression machine learning algorithm. This model was validated with recollected data in the SUNAT’s control locations, the results were compared with historical data to determine their efficiency obtained a mean square error 0.434 that is lower comparing to logistic regression and support vector machine algorithm. This research recommend the implementation of this model in all SUNAT’s controls locations in Peru.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).