Comparison of algorithms for the detection of marine vessels with machine vision
Descripción del Articulo
The detection of marine vessels for revenue control has many tracking deficiencies, which has resulted in losses of logistical resources, time, and money. However, digital cameras are not fully exploited since they capture images to recognize the vessels and give immediate notice to the control cent...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/14503 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/14503 https://doi.org/10.11591/ijece.v14i6.pp6332-6338 |
| Nivel de acceso: | acceso abierto |
| Materia: | Algorithms Machine learning Detection Ships https://purl.org/pe-repo/ocde/ford#2.11.03 |
| id |
UTPD_b77c46f0da5c42d0bceccfbf2e300ed1 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/14503 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Comparison of algorithms for the detection of marine vessels with machine vision |
| title |
Comparison of algorithms for the detection of marine vessels with machine vision |
| spellingShingle |
Comparison of algorithms for the detection of marine vessels with machine vision Rodríguez-Gonzales, José Algorithms Machine learning Detection Ships https://purl.org/pe-repo/ocde/ford#2.11.03 |
| title_short |
Comparison of algorithms for the detection of marine vessels with machine vision |
| title_full |
Comparison of algorithms for the detection of marine vessels with machine vision |
| title_fullStr |
Comparison of algorithms for the detection of marine vessels with machine vision |
| title_full_unstemmed |
Comparison of algorithms for the detection of marine vessels with machine vision |
| title_sort |
Comparison of algorithms for the detection of marine vessels with machine vision |
| author |
Rodríguez-Gonzales, José |
| author_facet |
Rodríguez-Gonzales, José Niquin-Jaimes, Junior Paiva-Peredo, Ernesto |
| author_role |
author |
| author2 |
Niquin-Jaimes, Junior Paiva-Peredo, Ernesto |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Rodríguez-Gonzales, José Niquin-Jaimes, Junior Paiva-Peredo, Ernesto |
| dc.subject.es_PE.fl_str_mv |
Algorithms Machine learning Detection Ships |
| topic |
Algorithms Machine learning Detection Ships https://purl.org/pe-repo/ocde/ford#2.11.03 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.03 |
| description |
The detection of marine vessels for revenue control has many tracking deficiencies, which has resulted in losses of logistical resources, time, and money. However, digital cameras are not fully exploited since they capture images to recognize the vessels and give immediate notice to the control center. The analyzed images go through an incredibly detailed process, which, thanks to neural training, allows us to recognize vessels without false positives. To do this, we must understand the behavior of object detection; we must know critical issues such as neural training, image digitization, types of filters, and machine learning, among others. We present results by comparing two development environments with their corresponding algorithms, making the recognition of ships immediately under neural training. In conclusion, it is analyzed based on 100 images to measure the boat detection capability between both algorithms, the response time, and the effectiveness of an image obtained by a digital camera. The result obtained by YOLOv7 was 100% effective under the application of processing techniques based on neural networks in convolutional neural network (CNN) regions compared to MATLAB, which applies processing metrics based on morphological images, obtaining low results. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-07T21:00:50Z |
| dc.date.available.none.fl_str_mv |
2025-11-07T21:00:50Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2088-8708 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/14503 |
| dc.identifier.journal.es_PE.fl_str_mv |
International Journal of Electrical and Computer Engineering |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.11591/ijece.v14i6.pp6332-6338 |
| identifier_str_mv |
2088-8708 International Journal of Electrical and Computer Engineering |
| url |
https://hdl.handle.net/20.500.12867/14503 https://doi.org/10.11591/ijece.v14i6.pp6332-6338 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-sa/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Institute of Advanced Engineering and Science |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a2f7ad2c-65ed-45c4-9140-f9f0d42a4497/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/79ac322d-6514-456d-81a0-7b2bd1df4b30/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0871ac8f-0f40-4ec1-a845-a8a9039cef97/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/28b071f3-d2a2-4bbe-94f8-a83947aa8f24/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/712c6fa5-1da0-4174-add1-5734b22489cf/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a5cffe8a-906b-4410-85ae-b56fdbbb22e0/download |
| bitstream.checksum.fl_str_mv |
b48ad5d3973cb954d212e42b879bed35 8a4605be74aa9ea9d79846c1fba20a33 590e613fd601d843d0ff9c51d5320f35 12f8dab1294d7fad36dc447a99479cd7 09d9f2be133da23cd0bc2162bdd26bd0 3ec3400a955639440ffa770b489fc2e4 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1852231955173605376 |
| spelling |
Rodríguez-Gonzales, JoséNiquin-Jaimes, JuniorPaiva-Peredo, Ernesto2025-11-07T21:00:50Z2025-11-07T21:00:50Z20242088-8708https://hdl.handle.net/20.500.12867/14503International Journal of Electrical and Computer Engineeringhttps://doi.org/10.11591/ijece.v14i6.pp6332-6338The detection of marine vessels for revenue control has many tracking deficiencies, which has resulted in losses of logistical resources, time, and money. However, digital cameras are not fully exploited since they capture images to recognize the vessels and give immediate notice to the control center. The analyzed images go through an incredibly detailed process, which, thanks to neural training, allows us to recognize vessels without false positives. To do this, we must understand the behavior of object detection; we must know critical issues such as neural training, image digitization, types of filters, and machine learning, among others. We present results by comparing two development environments with their corresponding algorithms, making the recognition of ships immediately under neural training. In conclusion, it is analyzed based on 100 images to measure the boat detection capability between both algorithms, the response time, and the effectiveness of an image obtained by a digital camera. The result obtained by YOLOv7 was 100% effective under the application of processing techniques based on neural networks in convolutional neural network (CNN) regions compared to MATLAB, which applies processing metrics based on morphological images, obtaining low results.Campus Lima Centroapplication/pdfengInstitute of Advanced Engineering and Scienceinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPAlgorithmsMachine learningDetectionShipshttps://purl.org/pe-repo/ocde/ford#2.11.03Comparison of algorithms for the detection of marine vessels with machine visioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALJ.Rodríguez_J.Niquin_E.Paiva_Articulo_2024.pdfJ.Rodríguez_J.Niquin_E.Paiva_Articulo_2024.pdfapplication/pdf552646https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a2f7ad2c-65ed-45c4-9140-f9f0d42a4497/downloadb48ad5d3973cb954d212e42b879bed35MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/79ac322d-6514-456d-81a0-7b2bd1df4b30/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTRodríguez.J_Niquin.J_Paiva.E_Articulo_2024.pdf.txtRodríguez.J_Niquin.J_Paiva.E_Articulo_2024.pdf.txtExtracted texttext/plain25437https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0871ac8f-0f40-4ec1-a845-a8a9039cef97/download590e613fd601d843d0ff9c51d5320f35MD53J.Rodríguez_J.Niquin_E.Paiva_Articulo_2024.pdf.txtJ.Rodríguez_J.Niquin_E.Paiva_Articulo_2024.pdf.txtExtracted texttext/plain26234https://repositorio.utp.edu.pe/backend/api/core/bitstreams/28b071f3-d2a2-4bbe-94f8-a83947aa8f24/download12f8dab1294d7fad36dc447a99479cd7MD57THUMBNAILRodríguez.J_Niquin.J_Paiva.E_Articulo_2024.pdf.jpgRodríguez.J_Niquin.J_Paiva.E_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg21001https://repositorio.utp.edu.pe/backend/api/core/bitstreams/712c6fa5-1da0-4174-add1-5734b22489cf/download09d9f2be133da23cd0bc2162bdd26bd0MD54J.Rodríguez_J.Niquin_E.Paiva_Articulo_2024.pdf.jpgJ.Rodríguez_J.Niquin_E.Paiva_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg39637https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a5cffe8a-906b-4410-85ae-b56fdbbb22e0/download3ec3400a955639440ffa770b489fc2e4MD5820.500.12867/14503oai:repositorio.utp.edu.pe:20.500.12867/145032025-11-30 18:20:41.788https://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.918182 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).