Comparison of algorithms for the detection of marine vessels with machine vision

Descripción del Articulo

The detection of marine vessels for revenue control has many tracking deficiencies, which has resulted in losses of logistical resources, time, and money. However, digital cameras are not fully exploited since they capture images to recognize the vessels and give immediate notice to the control cent...

Descripción completa

Detalles Bibliográficos
Autores: Rodríguez-Gonzales, José, Niquin-Jaimes, Junior, Paiva-Peredo, Ernesto
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/14503
Enlace del recurso:https://hdl.handle.net/20.500.12867/14503
https://doi.org/10.11591/ijece.v14i6.pp6332-6338
Nivel de acceso:acceso abierto
Materia:Algorithms
Machine learning
Detection
Ships
https://purl.org/pe-repo/ocde/ford#2.11.03
id UTPD_b77c46f0da5c42d0bceccfbf2e300ed1
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/14503
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Comparison of algorithms for the detection of marine vessels with machine vision
title Comparison of algorithms for the detection of marine vessels with machine vision
spellingShingle Comparison of algorithms for the detection of marine vessels with machine vision
Rodríguez-Gonzales, José
Algorithms
Machine learning
Detection
Ships
https://purl.org/pe-repo/ocde/ford#2.11.03
title_short Comparison of algorithms for the detection of marine vessels with machine vision
title_full Comparison of algorithms for the detection of marine vessels with machine vision
title_fullStr Comparison of algorithms for the detection of marine vessels with machine vision
title_full_unstemmed Comparison of algorithms for the detection of marine vessels with machine vision
title_sort Comparison of algorithms for the detection of marine vessels with machine vision
author Rodríguez-Gonzales, José
author_facet Rodríguez-Gonzales, José
Niquin-Jaimes, Junior
Paiva-Peredo, Ernesto
author_role author
author2 Niquin-Jaimes, Junior
Paiva-Peredo, Ernesto
author2_role author
author
dc.contributor.author.fl_str_mv Rodríguez-Gonzales, José
Niquin-Jaimes, Junior
Paiva-Peredo, Ernesto
dc.subject.es_PE.fl_str_mv Algorithms
Machine learning
Detection
Ships
topic Algorithms
Machine learning
Detection
Ships
https://purl.org/pe-repo/ocde/ford#2.11.03
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.03
description The detection of marine vessels for revenue control has many tracking deficiencies, which has resulted in losses of logistical resources, time, and money. However, digital cameras are not fully exploited since they capture images to recognize the vessels and give immediate notice to the control center. The analyzed images go through an incredibly detailed process, which, thanks to neural training, allows us to recognize vessels without false positives. To do this, we must understand the behavior of object detection; we must know critical issues such as neural training, image digitization, types of filters, and machine learning, among others. We present results by comparing two development environments with their corresponding algorithms, making the recognition of ships immediately under neural training. In conclusion, it is analyzed based on 100 images to measure the boat detection capability between both algorithms, the response time, and the effectiveness of an image obtained by a digital camera. The result obtained by YOLOv7 was 100% effective under the application of processing techniques based on neural networks in convolutional neural network (CNN) regions compared to MATLAB, which applies processing metrics based on morphological images, obtaining low results.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-11-07T21:00:50Z
dc.date.available.none.fl_str_mv 2025-11-07T21:00:50Z
dc.date.issued.fl_str_mv 2024
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2088-8708
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/14503
dc.identifier.journal.es_PE.fl_str_mv International Journal of Electrical and Computer Engineering
dc.identifier.doi.none.fl_str_mv https://doi.org/10.11591/ijece.v14i6.pp6332-6338
identifier_str_mv 2088-8708
International Journal of Electrical and Computer Engineering
url https://hdl.handle.net/20.500.12867/14503
https://doi.org/10.11591/ijece.v14i6.pp6332-6338
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Institute of Advanced Engineering and Science
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a2f7ad2c-65ed-45c4-9140-f9f0d42a4497/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/79ac322d-6514-456d-81a0-7b2bd1df4b30/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0871ac8f-0f40-4ec1-a845-a8a9039cef97/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/28b071f3-d2a2-4bbe-94f8-a83947aa8f24/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/712c6fa5-1da0-4174-add1-5734b22489cf/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a5cffe8a-906b-4410-85ae-b56fdbbb22e0/download
bitstream.checksum.fl_str_mv b48ad5d3973cb954d212e42b879bed35
8a4605be74aa9ea9d79846c1fba20a33
590e613fd601d843d0ff9c51d5320f35
12f8dab1294d7fad36dc447a99479cd7
09d9f2be133da23cd0bc2162bdd26bd0
3ec3400a955639440ffa770b489fc2e4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1852231955173605376
spelling Rodríguez-Gonzales, JoséNiquin-Jaimes, JuniorPaiva-Peredo, Ernesto2025-11-07T21:00:50Z2025-11-07T21:00:50Z20242088-8708https://hdl.handle.net/20.500.12867/14503International Journal of Electrical and Computer Engineeringhttps://doi.org/10.11591/ijece.v14i6.pp6332-6338The detection of marine vessels for revenue control has many tracking deficiencies, which has resulted in losses of logistical resources, time, and money. However, digital cameras are not fully exploited since they capture images to recognize the vessels and give immediate notice to the control center. The analyzed images go through an incredibly detailed process, which, thanks to neural training, allows us to recognize vessels without false positives. To do this, we must understand the behavior of object detection; we must know critical issues such as neural training, image digitization, types of filters, and machine learning, among others. We present results by comparing two development environments with their corresponding algorithms, making the recognition of ships immediately under neural training. In conclusion, it is analyzed based on 100 images to measure the boat detection capability between both algorithms, the response time, and the effectiveness of an image obtained by a digital camera. The result obtained by YOLOv7 was 100% effective under the application of processing techniques based on neural networks in convolutional neural network (CNN) regions compared to MATLAB, which applies processing metrics based on morphological images, obtaining low results.Campus Lima Centroapplication/pdfengInstitute of Advanced Engineering and Scienceinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPAlgorithmsMachine learningDetectionShipshttps://purl.org/pe-repo/ocde/ford#2.11.03Comparison of algorithms for the detection of marine vessels with machine visioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALJ.Rodríguez_J.Niquin_E.Paiva_Articulo_2024.pdfJ.Rodríguez_J.Niquin_E.Paiva_Articulo_2024.pdfapplication/pdf552646https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a2f7ad2c-65ed-45c4-9140-f9f0d42a4497/downloadb48ad5d3973cb954d212e42b879bed35MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/79ac322d-6514-456d-81a0-7b2bd1df4b30/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTRodríguez.J_Niquin.J_Paiva.E_Articulo_2024.pdf.txtRodríguez.J_Niquin.J_Paiva.E_Articulo_2024.pdf.txtExtracted texttext/plain25437https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0871ac8f-0f40-4ec1-a845-a8a9039cef97/download590e613fd601d843d0ff9c51d5320f35MD53J.Rodríguez_J.Niquin_E.Paiva_Articulo_2024.pdf.txtJ.Rodríguez_J.Niquin_E.Paiva_Articulo_2024.pdf.txtExtracted texttext/plain26234https://repositorio.utp.edu.pe/backend/api/core/bitstreams/28b071f3-d2a2-4bbe-94f8-a83947aa8f24/download12f8dab1294d7fad36dc447a99479cd7MD57THUMBNAILRodríguez.J_Niquin.J_Paiva.E_Articulo_2024.pdf.jpgRodríguez.J_Niquin.J_Paiva.E_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg21001https://repositorio.utp.edu.pe/backend/api/core/bitstreams/712c6fa5-1da0-4174-add1-5734b22489cf/download09d9f2be133da23cd0bc2162bdd26bd0MD54J.Rodríguez_J.Niquin_E.Paiva_Articulo_2024.pdf.jpgJ.Rodríguez_J.Niquin_E.Paiva_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg39637https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a5cffe8a-906b-4410-85ae-b56fdbbb22e0/download3ec3400a955639440ffa770b489fc2e4MD5820.500.12867/14503oai:repositorio.utp.edu.pe:20.500.12867/145032025-11-30 18:20:41.788https://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.918182
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).