Method for the analysis of health personnel availability in a pandemic crisis scenario through Monte Carlo simulation

Descripción del Articulo

During pandemic times, difficulties and problems related to the health sector are evident as the number of patients coming to health centers is higher compared to normal situations. This increase in the number of patients is typical of the pandemic, due to the high level of contagion in the populati...

Descripción completa

Detalles Bibliográficos
Autores: Rosario Pacahuala, Emilio Augusto, Pando-Ezcurra, Tamara, Auccahuasi, Wilver, Saenz Arenas, Esther Rosa, González Ponce de León, Erica Rojana, Olaya Cotera, Sandro, Flores Castañeda, Rosalynn Ornella, Herrera, Lucas
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/5978
Enlace del recurso:https://hdl.handle.net/20.500.12867/5978
https://doi.org/10.3390/app12168299
Nivel de acceso:acceso abierto
Materia:Simulation method
Medical personnel
Health crisis
https://purl.org/pe-repo/ocde/ford#3.00.00
Descripción
Sumario:During pandemic times, difficulties and problems related to the health sector are evident as the number of patients coming to health centers is higher compared to normal situations. This increase in the number of patients is typical of the pandemic, due to the high level of contagion in the population. Health personnel have a higher risk of infection, due to their sharing the work of caring for positive patients, so the infection rate is much higher. Hence, it remains necessary to understand the behavior of infection of health personnel, in order to be prepared to deal with the care of patients. Accordingly, in this research, we present a method to estimate different scenarios of infection and assess the probability of occurrence, so we can estimate the infection rate of health personnel. We present a simulation of 21 possible scenarios with 100 workers and a minimum of 80% needed to guarantee patient care. The results show that it is more likely that a 50% contagion scenario will occur, with an acceptable probability of 20%.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).