Credit risk analysis : using artificial intelligence in a web application
Descripción del Articulo
The advantages of machine learning are not only in trying to reduce losses due to better prediction but there are also benefits related to the evaluation of risk profiles, whether they are clients or entities. It also adds to the savings in operating costs and resources that must be reserved to cove...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/6879 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/6879 http://doi.org/10.14445/22315381/IJETT-V71I1P227 |
| Nivel de acceso: | acceso abierto |
| Materia: | Artificial intelligence Credit risk Financial entity Machine learning https://purl.org/pe-repo/ocde/ford#1.02.00 |
| id |
UTPD_92a606f326206abd4a1c208a17a1ef3c |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/6879 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Credit risk analysis : using artificial intelligence in a web application |
| title |
Credit risk analysis : using artificial intelligence in a web application |
| spellingShingle |
Credit risk analysis : using artificial intelligence in a web application Cano Lengua, Miguel Ángel Artificial intelligence Credit risk Financial entity Machine learning https://purl.org/pe-repo/ocde/ford#1.02.00 |
| title_short |
Credit risk analysis : using artificial intelligence in a web application |
| title_full |
Credit risk analysis : using artificial intelligence in a web application |
| title_fullStr |
Credit risk analysis : using artificial intelligence in a web application |
| title_full_unstemmed |
Credit risk analysis : using artificial intelligence in a web application |
| title_sort |
Credit risk analysis : using artificial intelligence in a web application |
| author |
Cano Lengua, Miguel Ángel |
| author_facet |
Cano Lengua, Miguel Ángel Andrade Arenas, Laberiano Mayorga Lira, Sergio Dennis |
| author_role |
author |
| author2 |
Andrade Arenas, Laberiano Mayorga Lira, Sergio Dennis |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Cano Lengua, Miguel Ángel Andrade Arenas, Laberiano Mayorga Lira, Sergio Dennis |
| dc.subject.es_PE.fl_str_mv |
Artificial intelligence Credit risk Financial entity Machine learning |
| topic |
Artificial intelligence Credit risk Financial entity Machine learning https://purl.org/pe-repo/ocde/ford#1.02.00 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.00 |
| description |
The advantages of machine learning are not only in trying to reduce losses due to better prediction but there are also benefits related to the evaluation of risk profiles, whether they are clients or entities. It also adds to the savings in operating costs and resources that must be reserved to cover potential delinquency. The objective of the work is to imply that artificial intelligence can help measure the credit risk index of a financial institution to avoid loss and thus determine whether to access a loan or not. In the methodology, the Python programming language will be used with the necessary libraries for the analysis of Artificial Intelligence (AI), which, through the steps done in work, will proceed to make an application that demonstrates how useful it is. It is machine learning to avoid losses. Finally, the final result obtained will be the application which shows us if a client accesses a bank loan or if, on the contrary, it was rejected based on old clients. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-04-27T15:30:25Z |
| dc.date.available.none.fl_str_mv |
2023-04-27T15:30:25Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2231-5381 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/6879 |
| dc.identifier.journal.es_PE.fl_str_mv |
International Journal of Engineering Trends and Technology |
| dc.identifier.doi.none.fl_str_mv |
http://doi.org/10.14445/22315381/IJETT-V71I1P227 |
| identifier_str_mv |
2231-5381 International Journal of Engineering Trends and Technology |
| url |
https://hdl.handle.net/20.500.12867/6879 http://doi.org/10.14445/22315381/IJETT-V71I1P227 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofseries.none.fl_str_mv |
International Journal of Engineering Trends and Technology;vol. 71, n° 1 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Seventh Sense Research Group |
| dc.publisher.country.es_PE.fl_str_mv |
IN |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6879/2/license.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/6879/1/L.Andrade_M.Cano_Articulo_2023.pdf http://repositorio.utp.edu.pe/bitstream/20.500.12867/6879/3/L.Andrade_M.Cano_Articulo_2023.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/6879/4/L.Andrade_M.Cano_Articulo_2023.pdf.jpg |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 475b74229d8be8a49618cb7cc202bfe0 db05ecf49c5e192c81ad364316ffe31a d51d26aa31e1e35b64928326a4178ea7 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1817984951796105216 |
| spelling |
Cano Lengua, Miguel ÁngelAndrade Arenas, LaberianoMayorga Lira, Sergio Dennis2023-04-27T15:30:25Z2023-04-27T15:30:25Z20232231-5381https://hdl.handle.net/20.500.12867/6879International Journal of Engineering Trends and Technologyhttp://doi.org/10.14445/22315381/IJETT-V71I1P227The advantages of machine learning are not only in trying to reduce losses due to better prediction but there are also benefits related to the evaluation of risk profiles, whether they are clients or entities. It also adds to the savings in operating costs and resources that must be reserved to cover potential delinquency. The objective of the work is to imply that artificial intelligence can help measure the credit risk index of a financial institution to avoid loss and thus determine whether to access a loan or not. In the methodology, the Python programming language will be used with the necessary libraries for the analysis of Artificial Intelligence (AI), which, through the steps done in work, will proceed to make an application that demonstrates how useful it is. It is machine learning to avoid losses. Finally, the final result obtained will be the application which shows us if a client accesses a bank loan or if, on the contrary, it was rejected based on old clients.Campus Lima Centroapplication/pdfengSeventh Sense Research GroupINInternational Journal of Engineering Trends and Technology;vol. 71, n° 1info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPArtificial intelligenceCredit riskFinancial entityMachine learninghttps://purl.org/pe-repo/ocde/ford#1.02.00Credit risk analysis : using artificial intelligence in a web applicationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/6879/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALL.Andrade_M.Cano_Articulo_2023.pdfL.Andrade_M.Cano_Articulo_2023.pdfapplication/pdf1411778http://repositorio.utp.edu.pe/bitstream/20.500.12867/6879/1/L.Andrade_M.Cano_Articulo_2023.pdf475b74229d8be8a49618cb7cc202bfe0MD51TEXTL.Andrade_M.Cano_Articulo_2023.pdf.txtL.Andrade_M.Cano_Articulo_2023.pdf.txtExtracted texttext/plain37030http://repositorio.utp.edu.pe/bitstream/20.500.12867/6879/3/L.Andrade_M.Cano_Articulo_2023.pdf.txtdb05ecf49c5e192c81ad364316ffe31aMD53THUMBNAILL.Andrade_M.Cano_Articulo_2023.pdf.jpgL.Andrade_M.Cano_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg22585http://repositorio.utp.edu.pe/bitstream/20.500.12867/6879/4/L.Andrade_M.Cano_Articulo_2023.pdf.jpgd51d26aa31e1e35b64928326a4178ea7MD5420.500.12867/6879oai:repositorio.utp.edu.pe:20.500.12867/68792023-04-28 09:09:58.412Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.977305 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).