Credit risk analysis : using artificial intelligence in a web application

Descripción del Articulo

The advantages of machine learning are not only in trying to reduce losses due to better prediction but there are also benefits related to the evaluation of risk profiles, whether they are clients or entities. It also adds to the savings in operating costs and resources that must be reserved to cove...

Descripción completa

Detalles Bibliográficos
Autores: Cano Lengua, Miguel Ángel, Andrade Arenas, Laberiano, Mayorga Lira, Sergio Dennis
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/6879
Enlace del recurso:https://hdl.handle.net/20.500.12867/6879
http://doi.org/10.14445/22315381/IJETT-V71I1P227
Nivel de acceso:acceso abierto
Materia:Artificial intelligence
Credit risk
Financial entity
Machine learning
https://purl.org/pe-repo/ocde/ford#1.02.00
id UTPD_92a606f326206abd4a1c208a17a1ef3c
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/6879
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Credit risk analysis : using artificial intelligence in a web application
title Credit risk analysis : using artificial intelligence in a web application
spellingShingle Credit risk analysis : using artificial intelligence in a web application
Cano Lengua, Miguel Ángel
Artificial intelligence
Credit risk
Financial entity
Machine learning
https://purl.org/pe-repo/ocde/ford#1.02.00
title_short Credit risk analysis : using artificial intelligence in a web application
title_full Credit risk analysis : using artificial intelligence in a web application
title_fullStr Credit risk analysis : using artificial intelligence in a web application
title_full_unstemmed Credit risk analysis : using artificial intelligence in a web application
title_sort Credit risk analysis : using artificial intelligence in a web application
author Cano Lengua, Miguel Ángel
author_facet Cano Lengua, Miguel Ángel
Andrade Arenas, Laberiano
Mayorga Lira, Sergio Dennis
author_role author
author2 Andrade Arenas, Laberiano
Mayorga Lira, Sergio Dennis
author2_role author
author
dc.contributor.author.fl_str_mv Cano Lengua, Miguel Ángel
Andrade Arenas, Laberiano
Mayorga Lira, Sergio Dennis
dc.subject.es_PE.fl_str_mv Artificial intelligence
Credit risk
Financial entity
Machine learning
topic Artificial intelligence
Credit risk
Financial entity
Machine learning
https://purl.org/pe-repo/ocde/ford#1.02.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.00
description The advantages of machine learning are not only in trying to reduce losses due to better prediction but there are also benefits related to the evaluation of risk profiles, whether they are clients or entities. It also adds to the savings in operating costs and resources that must be reserved to cover potential delinquency. The objective of the work is to imply that artificial intelligence can help measure the credit risk index of a financial institution to avoid loss and thus determine whether to access a loan or not. In the methodology, the Python programming language will be used with the necessary libraries for the analysis of Artificial Intelligence (AI), which, through the steps done in work, will proceed to make an application that demonstrates how useful it is. It is machine learning to avoid losses. Finally, the final result obtained will be the application which shows us if a client accesses a bank loan or if, on the contrary, it was rejected based on old clients.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-04-27T15:30:25Z
dc.date.available.none.fl_str_mv 2023-04-27T15:30:25Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2231-5381
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/6879
dc.identifier.journal.es_PE.fl_str_mv International Journal of Engineering Trends and Technology
dc.identifier.doi.none.fl_str_mv http://doi.org/10.14445/22315381/IJETT-V71I1P227
identifier_str_mv 2231-5381
International Journal of Engineering Trends and Technology
url https://hdl.handle.net/20.500.12867/6879
http://doi.org/10.14445/22315381/IJETT-V71I1P227
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv International Journal of Engineering Trends and Technology;vol. 71, n° 1
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Seventh Sense Research Group
dc.publisher.country.es_PE.fl_str_mv IN
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/6879/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6879/1/L.Andrade_M.Cano_Articulo_2023.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6879/3/L.Andrade_M.Cano_Articulo_2023.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6879/4/L.Andrade_M.Cano_Articulo_2023.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
475b74229d8be8a49618cb7cc202bfe0
db05ecf49c5e192c81ad364316ffe31a
d51d26aa31e1e35b64928326a4178ea7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984951796105216
spelling Cano Lengua, Miguel ÁngelAndrade Arenas, LaberianoMayorga Lira, Sergio Dennis2023-04-27T15:30:25Z2023-04-27T15:30:25Z20232231-5381https://hdl.handle.net/20.500.12867/6879International Journal of Engineering Trends and Technologyhttp://doi.org/10.14445/22315381/IJETT-V71I1P227The advantages of machine learning are not only in trying to reduce losses due to better prediction but there are also benefits related to the evaluation of risk profiles, whether they are clients or entities. It also adds to the savings in operating costs and resources that must be reserved to cover potential delinquency. The objective of the work is to imply that artificial intelligence can help measure the credit risk index of a financial institution to avoid loss and thus determine whether to access a loan or not. In the methodology, the Python programming language will be used with the necessary libraries for the analysis of Artificial Intelligence (AI), which, through the steps done in work, will proceed to make an application that demonstrates how useful it is. It is machine learning to avoid losses. Finally, the final result obtained will be the application which shows us if a client accesses a bank loan or if, on the contrary, it was rejected based on old clients.Campus Lima Centroapplication/pdfengSeventh Sense Research GroupINInternational Journal of Engineering Trends and Technology;vol. 71, n° 1info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPArtificial intelligenceCredit riskFinancial entityMachine learninghttps://purl.org/pe-repo/ocde/ford#1.02.00Credit risk analysis : using artificial intelligence in a web applicationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/6879/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALL.Andrade_M.Cano_Articulo_2023.pdfL.Andrade_M.Cano_Articulo_2023.pdfapplication/pdf1411778http://repositorio.utp.edu.pe/bitstream/20.500.12867/6879/1/L.Andrade_M.Cano_Articulo_2023.pdf475b74229d8be8a49618cb7cc202bfe0MD51TEXTL.Andrade_M.Cano_Articulo_2023.pdf.txtL.Andrade_M.Cano_Articulo_2023.pdf.txtExtracted texttext/plain37030http://repositorio.utp.edu.pe/bitstream/20.500.12867/6879/3/L.Andrade_M.Cano_Articulo_2023.pdf.txtdb05ecf49c5e192c81ad364316ffe31aMD53THUMBNAILL.Andrade_M.Cano_Articulo_2023.pdf.jpgL.Andrade_M.Cano_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg22585http://repositorio.utp.edu.pe/bitstream/20.500.12867/6879/4/L.Andrade_M.Cano_Articulo_2023.pdf.jpgd51d26aa31e1e35b64928326a4178ea7MD5420.500.12867/6879oai:repositorio.utp.edu.pe:20.500.12867/68792023-04-28 09:09:58.412Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.977305
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).