Exportación Completada — 

Credit risk analysis : using artificial intelligence in a web application

Descripción del Articulo

The advantages of machine learning are not only in trying to reduce losses due to better prediction but there are also benefits related to the evaluation of risk profiles, whether they are clients or entities. It also adds to the savings in operating costs and resources that must be reserved to cove...

Descripción completa

Detalles Bibliográficos
Autores: Cano Lengua, Miguel Ángel, Andrade Arenas, Laberiano, Mayorga Lira, Sergio Dennis
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/6879
Enlace del recurso:https://hdl.handle.net/20.500.12867/6879
http://doi.org/10.14445/22315381/IJETT-V71I1P227
Nivel de acceso:acceso abierto
Materia:Artificial intelligence
Credit risk
Financial entity
Machine learning
https://purl.org/pe-repo/ocde/ford#1.02.00
Descripción
Sumario:The advantages of machine learning are not only in trying to reduce losses due to better prediction but there are also benefits related to the evaluation of risk profiles, whether they are clients or entities. It also adds to the savings in operating costs and resources that must be reserved to cover potential delinquency. The objective of the work is to imply that artificial intelligence can help measure the credit risk index of a financial institution to avoid loss and thus determine whether to access a loan or not. In the methodology, the Python programming language will be used with the necessary libraries for the analysis of Artificial Intelligence (AI), which, through the steps done in work, will proceed to make an application that demonstrates how useful it is. It is machine learning to avoid losses. Finally, the final result obtained will be the application which shows us if a client accesses a bank loan or if, on the contrary, it was rejected based on old clients.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).