Smart system model for the recruitment of teachers

Descripción del Articulo

Times change, for many reasons, due to technological development, new ways of doing things and in some cases forced by a global condition, is the case of the present case, where we analyze the teacher selection processes, although many of the Academic activities are developed at a distance, the sele...

Descripción completa

Detalles Bibliográficos
Autores: Rojas Romero, Karin Corina, Auccahuasi, Wilver, Herrera, Lucas, Meza, Sandra, Ovalle, Christian, Plasencia, Ivette, Barrera Loza, Ana, Figueroa Revilla, Jorge, Flores Peña, Pedro, Montes Osorio, Yuly, Fuentes, Alfonso, Urbano, Kitty
Formato: objeto de conferencia
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/6402
Enlace del recurso:https://hdl.handle.net/20.500.12867/6402
Nivel de acceso:acceso abierto
Materia:Employee selection
Teachers
Artificial neural networks
https://purl.org/pe-repo/ocde/ford#2.00.00
id UTPD_7b8f01e10f609fa1629425543ed2670c
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/6402
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Smart system model for the recruitment of teachers
title Smart system model for the recruitment of teachers
spellingShingle Smart system model for the recruitment of teachers
Rojas Romero, Karin Corina
Employee selection
Teachers
Artificial neural networks
https://purl.org/pe-repo/ocde/ford#2.00.00
title_short Smart system model for the recruitment of teachers
title_full Smart system model for the recruitment of teachers
title_fullStr Smart system model for the recruitment of teachers
title_full_unstemmed Smart system model for the recruitment of teachers
title_sort Smart system model for the recruitment of teachers
author Rojas Romero, Karin Corina
author_facet Rojas Romero, Karin Corina
Auccahuasi, Wilver
Herrera, Lucas
Meza, Sandra
Ovalle, Christian
Plasencia, Ivette
Barrera Loza, Ana
Figueroa Revilla, Jorge
Flores Peña, Pedro
Montes Osorio, Yuly
Fuentes, Alfonso
Urbano, Kitty
author_role author
author2 Auccahuasi, Wilver
Herrera, Lucas
Meza, Sandra
Ovalle, Christian
Plasencia, Ivette
Barrera Loza, Ana
Figueroa Revilla, Jorge
Flores Peña, Pedro
Montes Osorio, Yuly
Fuentes, Alfonso
Urbano, Kitty
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Rojas Romero, Karin Corina
Auccahuasi, Wilver
Herrera, Lucas
Meza, Sandra
Ovalle, Christian
Plasencia, Ivette
Barrera Loza, Ana
Figueroa Revilla, Jorge
Flores Peña, Pedro
Montes Osorio, Yuly
Fuentes, Alfonso
Urbano, Kitty
dc.subject.es_PE.fl_str_mv Employee selection
Teachers
Artificial neural networks
topic Employee selection
Teachers
Artificial neural networks
https://purl.org/pe-repo/ocde/ford#2.00.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.00.00
description Times change, for many reasons, due to technological development, new ways of doing things and in some cases forced by a global condition, is the case of the present case, where we analyze the teacher selection processes, although many of the Academic activities are developed at a distance, the selection processes also accompany this model, in this process factors that must be presented according to the profile required by the institution are analyzed, in this work a technique is proposed to be able to classify the best candidates in a Teacher selection process, the methodology consists of analyzing three groups of characteristics that the candidates must present, such as the writing exercises, the group interview and finally a demonstration class, in each of them particular criteria are evaluated, a demonstrative example It is presented as a demonstration, where it can be conditioned according to the criteria of each ins As a result, we have a computational model based on neural networks, where the best candidates can be pre-selected or classified in a teacher selection process, the prototype can be scaled and used in different sectors.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-12-22T22:53:30Z
dc.date.available.none.fl_str_mv 2022-12-22T22:53:30Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format conferenceObject
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1613-0073
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/6402
dc.identifier.journal.es_PE.fl_str_mv CEUR Workshop Proceedings
identifier_str_mv 1613-0073
CEUR Workshop Proceedings
url https://hdl.handle.net/20.500.12867/6402
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv CEUR-WS Team
dc.publisher.country.es_PE.fl_str_mv US
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/6402/1/K.Rojas_CEURWP_Conference_Paper_eng_2022.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6402/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6402/3/K.Rojas_CEURWP_Conference_Paper_eng_2022.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6402/4/K.Rojas_CEURWP_Conference_Paper_eng_2022.pdf.jpg
bitstream.checksum.fl_str_mv 949431c26a5219acd38034149bff1d41
8a4605be74aa9ea9d79846c1fba20a33
5ba888cf0efd0fd4db3fe2415db193ec
1534eba30b16ebf5c85fee98e67d553c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984892157296640
spelling Rojas Romero, Karin CorinaAuccahuasi, WilverHerrera, LucasMeza, SandraOvalle, ChristianPlasencia, IvetteBarrera Loza, AnaFigueroa Revilla, JorgeFlores Peña, PedroMontes Osorio, YulyFuentes, AlfonsoUrbano, Kitty2022-12-22T22:53:30Z2022-12-22T22:53:30Z20221613-0073https://hdl.handle.net/20.500.12867/6402CEUR Workshop ProceedingsTimes change, for many reasons, due to technological development, new ways of doing things and in some cases forced by a global condition, is the case of the present case, where we analyze the teacher selection processes, although many of the Academic activities are developed at a distance, the selection processes also accompany this model, in this process factors that must be presented according to the profile required by the institution are analyzed, in this work a technique is proposed to be able to classify the best candidates in a Teacher selection process, the methodology consists of analyzing three groups of characteristics that the candidates must present, such as the writing exercises, the group interview and finally a demonstration class, in each of them particular criteria are evaluated, a demonstrative example It is presented as a demonstration, where it can be conditioned according to the criteria of each ins As a result, we have a computational model based on neural networks, where the best candidates can be pre-selected or classified in a teacher selection process, the prototype can be scaled and used in different sectors.Campus Ateapplication/pdfengCEUR-WS TeamUSinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPEmployee selectionTeachersArtificial neural networkshttps://purl.org/pe-repo/ocde/ford#2.00.00Smart system model for the recruitment of teachersinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionORIGINALK.Rojas_CEURWP_Conference_Paper_eng_2022.pdfK.Rojas_CEURWP_Conference_Paper_eng_2022.pdfapplication/pdf492054http://repositorio.utp.edu.pe/bitstream/20.500.12867/6402/1/K.Rojas_CEURWP_Conference_Paper_eng_2022.pdf949431c26a5219acd38034149bff1d41MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/6402/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTK.Rojas_CEURWP_Conference_Paper_eng_2022.pdf.txtK.Rojas_CEURWP_Conference_Paper_eng_2022.pdf.txtExtracted texttext/plain17674http://repositorio.utp.edu.pe/bitstream/20.500.12867/6402/3/K.Rojas_CEURWP_Conference_Paper_eng_2022.pdf.txt5ba888cf0efd0fd4db3fe2415db193ecMD53THUMBNAILK.Rojas_CEURWP_Conference_Paper_eng_2022.pdf.jpgK.Rojas_CEURWP_Conference_Paper_eng_2022.pdf.jpgGenerated Thumbnailimage/jpeg19360http://repositorio.utp.edu.pe/bitstream/20.500.12867/6402/4/K.Rojas_CEURWP_Conference_Paper_eng_2022.pdf.jpg1534eba30b16ebf5c85fee98e67d553cMD5420.500.12867/6402oai:repositorio.utp.edu.pe:20.500.12867/64022022-12-22 20:03:38.396Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.889614
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).