Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion

Descripción del Articulo

21st LACCEI International Multi-Conference for Engineering, Education and Technology, LACCEI 2023
Detalles Bibliográficos
Autores: Sánchez, Luis, Díaz, Félix, Rojas, Jhonny
Formato: objeto de conferencia
Fecha de Publicación:2023
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/10766
Enlace del recurso:https://hdl.handle.net/20.500.12867/10766
https://dx.doi.org/10.18687/LACCEI2023.1.1.1072
Nivel de acceso:acceso abierto
Materia:Higgs boson
Vector boson fusion
Standard Model (SM)
DNN analysis
https://purl.org/pe-repo/ocde/ford#5.03.01
id UTPD_73b012ca1d2277b5ad59e7a05d3431da
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/10766
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion
title Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion
spellingShingle Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion
Sánchez, Luis
Higgs boson
Vector boson fusion
Standard Model (SM)
DNN analysis
https://purl.org/pe-repo/ocde/ford#5.03.01
title_short Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion
title_full Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion
title_fullStr Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion
title_full_unstemmed Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion
title_sort Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusion
author Sánchez, Luis
author_facet Sánchez, Luis
Díaz, Félix
Rojas, Jhonny
author_role author
author2 Díaz, Félix
Rojas, Jhonny
author2_role author
author
dc.contributor.author.fl_str_mv Sánchez, Luis
Díaz, Félix
Rojas, Jhonny
dc.subject.es_PE.fl_str_mv Higgs boson
Vector boson fusion
Standard Model (SM)
DNN analysis
topic Higgs boson
Vector boson fusion
Standard Model (SM)
DNN analysis
https://purl.org/pe-repo/ocde/ford#5.03.01
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.03.01
description 21st LACCEI International Multi-Conference for Engineering, Education and Technology, LACCEI 2023
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2025-01-24T17:19:38Z
dc.date.available.none.fl_str_mv 2025-01-24T17:19:38Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format conferenceObject
status_str publishedVersion
dc.identifier.isbn.none.fl_str_mv 9786289520743
dc.identifier.issn.none.fl_str_mv 2414-6390
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/10766
dc.identifier.journal.es_PE.fl_str_mv Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
dc.identifier.doi.none.fl_str_mv https://dx.doi.org/10.18687/LACCEI2023.1.1.1072
identifier_str_mv 9786289520743
2414-6390
Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
url https://hdl.handle.net/20.500.12867/10766
https://dx.doi.org/10.18687/LACCEI2023.1.1.1072
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology;Vol. 2023-July
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Latin American and Caribbean Consortium of Engineering Institutions
dc.publisher.country.es_PE.fl_str_mv US
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv https://repositorio.utp.edu.pe/backend/api/core/bitstreams/e01adf0d-5d95-4ea3-8265-8532b3a84907/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ff72e66e-e614-4b95-9ae9-3882f8afa24f/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/72879a44-c16c-4c2d-a850-b2a5fb0d8932/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/606cff91-4613-4247-a7cb-48f4c94d11a3/download
bitstream.checksum.fl_str_mv ba9ab5ade8b985c11cbdacf58fa59796
8a4605be74aa9ea9d79846c1fba20a33
bae48dc0ec890c37f6ef7c685045fcf0
0826d1f414c88503ea7fcb8d251ce21d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1852231865467928576
spelling Sánchez, LuisDíaz, FélixRojas, Jhonny2025-01-24T17:19:38Z2025-01-24T17:19:38Z202397862895207432414-6390https://hdl.handle.net/20.500.12867/10766Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technologyhttps://dx.doi.org/10.18687/LACCEI2023.1.1.107221st LACCEI International Multi-Conference for Engineering, Education and Technology, LACCEI 2023In this article, an analysis of the Higgs boson production via vector boson fusion in the SM I-WW- 2l2v (l = e, u) is performed from an optimization techniquc in the event selection, called DNN analysis. This analysis compares the Standard selection process that CERN performs to study the production of a particle from a cut-based analysis, where the study of statistical significance shows that DNN analysis can better separate signal and background events. To perform the DNN analysis, we optimized the neural network configuration to discriminate ignal and background events effectively. Moreover, studies of activation functions such as RELU and Sigmoid, stochastic optimization methods such as ADAM, and regularization methods such as Dropout. All this leads to constructing an optimal neural network topology capable of learning events and signal and background discrimination. Finally, we found an important improvement of approximately 47% and 27% for ZyBf and ZHiggs respectively.Escuela de Postgradoapplication/pdfengLatin American and Caribbean Consortium of Engineering InstitutionsUSProceedings of the LACCEI international Multi-conference for Engineering, Education and Technology;Vol. 2023-Julyinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPHiggs bosonVector boson fusionStandard Model (SM)DNN analysishttps://purl.org/pe-repo/ocde/ford#5.03.01Deep Neural Network to Describe the Measurement of the Higgs Production in the Full Leptonic Channel via Vector Boson Fusioninfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionORIGINALL.Sanchez_F.Diaz_J.Rojas_Conference_Paper_2023.pdfL.Sanchez_F.Diaz_J.Rojas_Conference_Paper_2023.pdfapplication/pdf945531https://repositorio.utp.edu.pe/backend/api/core/bitstreams/e01adf0d-5d95-4ea3-8265-8532b3a84907/downloadba9ab5ade8b985c11cbdacf58fa59796MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ff72e66e-e614-4b95-9ae9-3882f8afa24f/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTL.Sanchez_F.Diaz_J.Rojas_Conference_Paper_2023.pdf.txtL.Sanchez_F.Diaz_J.Rojas_Conference_Paper_2023.pdf.txtExtracted texttext/plain41764https://repositorio.utp.edu.pe/backend/api/core/bitstreams/72879a44-c16c-4c2d-a850-b2a5fb0d8932/downloadbae48dc0ec890c37f6ef7c685045fcf0MD55THUMBNAILL.Sanchez_F.Diaz_J.Rojas_Conference_Paper_2023.pdf.jpgL.Sanchez_F.Diaz_J.Rojas_Conference_Paper_2023.pdf.jpgGenerated Thumbnailimage/jpeg55706https://repositorio.utp.edu.pe/backend/api/core/bitstreams/606cff91-4613-4247-a7cb-48f4c94d11a3/download0826d1f414c88503ea7fcb8d251ce21dMD5620.500.12867/10766oai:repositorio.utp.edu.pe:20.500.12867/107662025-11-30 17:54:51.985https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.902549
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).