Machine larning-based intelligent wireless communication system for solving real-world security issues

Descripción del Articulo

The intelligent wireless system focuses on integrating with the advanced technologies like machine learning and related approaches in order to enhance the performance, productivity, and output. The implementation of machine learning approaches is mainly applied in order to enhance the efficient comm...

Descripción completa

Detalles Bibliográficos
Autores: Alanya Beltran, Joel Elvys, Raut, Roshani, Patil, Sonali, Christobel, Y. Angeline, Vats, Prashant, Nagaprasad, S., Prasanna Kumar, Yekula
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/5823
Enlace del recurso:https://hdl.handle.net/20.500.12867/5823
http://doi.org/10.1155/2022/7978822
Nivel de acceso:acceso abierto
Materia:Machine larning
Wireless communication
https://purl.org/pe-repo/ocde/ford#2.02.03
id UTPD_3eef7680d53854c3090286e3a3de7937
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/5823
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Machine larning-based intelligent wireless communication system for solving real-world security issues
title Machine larning-based intelligent wireless communication system for solving real-world security issues
spellingShingle Machine larning-based intelligent wireless communication system for solving real-world security issues
Alanya Beltran, Joel Elvys
Machine larning
Wireless communication
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short Machine larning-based intelligent wireless communication system for solving real-world security issues
title_full Machine larning-based intelligent wireless communication system for solving real-world security issues
title_fullStr Machine larning-based intelligent wireless communication system for solving real-world security issues
title_full_unstemmed Machine larning-based intelligent wireless communication system for solving real-world security issues
title_sort Machine larning-based intelligent wireless communication system for solving real-world security issues
author Alanya Beltran, Joel Elvys
author_facet Alanya Beltran, Joel Elvys
Raut, Roshani
Patil, Sonali
Christobel, Y. Angeline
Vats, Prashant
Nagaprasad, S.
Prasanna Kumar, Yekula
author_role author
author2 Raut, Roshani
Patil, Sonali
Christobel, Y. Angeline
Vats, Prashant
Nagaprasad, S.
Prasanna Kumar, Yekula
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Alanya Beltran, Joel Elvys
Raut, Roshani
Patil, Sonali
Christobel, Y. Angeline
Vats, Prashant
Nagaprasad, S.
Prasanna Kumar, Yekula
dc.subject.es_PE.fl_str_mv Machine larning
Wireless communication
topic Machine larning
Wireless communication
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.03
description The intelligent wireless system focuses on integrating with the advanced technologies like machine learning and related approaches in order to enhance the performance, productivity, and output. The implementation of machine learning approaches is mainly applied in order to enhance the efficient communication system, enable creation of variable node locations, support collection of data and information, analyze the pattern, and forecast so as to provide better services to the end users. The efficiency of using these technologies tend to lower the cost and support in deploying the resources effectively. The wireless network system tends to enhance the bandwidth, and the application of novel machine learning approaches supports detection of unrelated data and information and enables analysis of latency at each part of the communication channel. The study involves critically analyzing the key determinants of machine learning approaches in supporting enhanced intelligent network communication in the industries. The researchers are aimed at gathering both primary data and secondary data for the study. The respondents are chosen in the industry so that they can provide better inputs and insights related to the area of research. The key determinants considered for the study are machine learning-influenced management of hotspots, identification of critical congestion points, spectrum availability, and management. The analysis is made using SPSS data analysis package based on which it is noted that all the factors make major influences towards the intelligent communication, and hence machine learning supports critically in enhancing the user experience effectively.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-27T19:20:00Z
dc.date.available.none.fl_str_mv 2022-07-27T19:20:00Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1939-0122
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/5823
dc.identifier.journal.es_PE.fl_str_mv Security and Communication Networks
dc.identifier.doi.none.fl_str_mv http://doi.org/10.1155/2022/7978822
identifier_str_mv 1939-0122
Security and Communication Networks
url https://hdl.handle.net/20.500.12867/5823
http://doi.org/10.1155/2022/7978822
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Hindawi
dc.publisher.country.es_PE.fl_str_mv EG
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/5823/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5823/1/J.Alanya_SCN_Articulo_eng_2022.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5823/3/J.Alanya_SCN_Articulo_eng_2022.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5823/4/J.Alanya_SCN_Articulo_eng_2022.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
315265bb7dd0d2ba4a6ba8c626a9d0ba
428ee06357e1da6a6a548d99ed7fb32e
6887e32670e3c3a612e402df1290a100
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984889770737664
spelling Alanya Beltran, Joel ElvysRaut, RoshaniPatil, SonaliChristobel, Y. AngelineVats, PrashantNagaprasad, S.Prasanna Kumar, Yekula2022-07-27T19:20:00Z2022-07-27T19:20:00Z20221939-0122https://hdl.handle.net/20.500.12867/5823Security and Communication Networkshttp://doi.org/10.1155/2022/7978822The intelligent wireless system focuses on integrating with the advanced technologies like machine learning and related approaches in order to enhance the performance, productivity, and output. The implementation of machine learning approaches is mainly applied in order to enhance the efficient communication system, enable creation of variable node locations, support collection of data and information, analyze the pattern, and forecast so as to provide better services to the end users. The efficiency of using these technologies tend to lower the cost and support in deploying the resources effectively. The wireless network system tends to enhance the bandwidth, and the application of novel machine learning approaches supports detection of unrelated data and information and enables analysis of latency at each part of the communication channel. The study involves critically analyzing the key determinants of machine learning approaches in supporting enhanced intelligent network communication in the industries. The researchers are aimed at gathering both primary data and secondary data for the study. The respondents are chosen in the industry so that they can provide better inputs and insights related to the area of research. The key determinants considered for the study are machine learning-influenced management of hotspots, identification of critical congestion points, spectrum availability, and management. The analysis is made using SPSS data analysis package based on which it is noted that all the factors make major influences towards the intelligent communication, and hence machine learning supports critically in enhancing the user experience effectively.Campus Ateapplication/pdfspaHindawiEGinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine larningWireless communicationhttps://purl.org/pe-repo/ocde/ford#2.02.03Machine larning-based intelligent wireless communication system for solving real-world security issuesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/5823/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALJ.Alanya_SCN_Articulo_eng_2022.pdfJ.Alanya_SCN_Articulo_eng_2022.pdfapplication/pdf641603http://repositorio.utp.edu.pe/bitstream/20.500.12867/5823/1/J.Alanya_SCN_Articulo_eng_2022.pdf315265bb7dd0d2ba4a6ba8c626a9d0baMD51TEXTJ.Alanya_SCN_Articulo_eng_2022.pdf.txtJ.Alanya_SCN_Articulo_eng_2022.pdf.txtExtracted texttext/plain28654http://repositorio.utp.edu.pe/bitstream/20.500.12867/5823/3/J.Alanya_SCN_Articulo_eng_2022.pdf.txt428ee06357e1da6a6a548d99ed7fb32eMD53THUMBNAILJ.Alanya_SCN_Articulo_eng_2022.pdf.jpgJ.Alanya_SCN_Articulo_eng_2022.pdf.jpgGenerated Thumbnailimage/jpeg19953http://repositorio.utp.edu.pe/bitstream/20.500.12867/5823/4/J.Alanya_SCN_Articulo_eng_2022.pdf.jpg6887e32670e3c3a612e402df1290a100MD5420.500.12867/5823oai:repositorio.utp.edu.pe:20.500.12867/58232022-08-06 17:03:26.269Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.971837
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).