Implementing critical machine learning (ML) approaches for generating robust discriminative neuroimaging representations using structural equation model (SEM)

Descripción del Articulo

Critical ML or CML is a critical approach development of the standard ML (SML) procedure. Conventional ML (ML) is being used in radiology departments where complex neuroimages are discriminated using ML technology. Radiologists and researchers found that sole decision by the ML algorithms is not acc...

Descripción completa

Detalles Bibliográficos
Autores: Panduro Ramirez, Jeidy Gisell, Rashad Baker, Mohammed, Lakshmi Padmaja, D., Puviarasi, R., Mann, Suman, Tiwari, Mohit, Abubakari Samori, Issah
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/5815
Enlace del recurso:https://hdl.handle.net/20.500.12867/5815
http://doi.org/10.1155/2022/6501975
Nivel de acceso:acceso abierto
Materia:Neuroimaging
Machine Learning
https://purl.org/pe-repo/ocde/ford#2.02.03
id UTPD_3543808f64a285fd205eeb4249411071
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/5815
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Implementing critical machine learning (ML) approaches for generating robust discriminative neuroimaging representations using structural equation model (SEM)
title Implementing critical machine learning (ML) approaches for generating robust discriminative neuroimaging representations using structural equation model (SEM)
spellingShingle Implementing critical machine learning (ML) approaches for generating robust discriminative neuroimaging representations using structural equation model (SEM)
Panduro Ramirez, Jeidy Gisell
Neuroimaging
Machine Learning
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short Implementing critical machine learning (ML) approaches for generating robust discriminative neuroimaging representations using structural equation model (SEM)
title_full Implementing critical machine learning (ML) approaches for generating robust discriminative neuroimaging representations using structural equation model (SEM)
title_fullStr Implementing critical machine learning (ML) approaches for generating robust discriminative neuroimaging representations using structural equation model (SEM)
title_full_unstemmed Implementing critical machine learning (ML) approaches for generating robust discriminative neuroimaging representations using structural equation model (SEM)
title_sort Implementing critical machine learning (ML) approaches for generating robust discriminative neuroimaging representations using structural equation model (SEM)
author Panduro Ramirez, Jeidy Gisell
author_facet Panduro Ramirez, Jeidy Gisell
Rashad Baker, Mohammed
Lakshmi Padmaja, D.
Puviarasi, R.
Mann, Suman
Tiwari, Mohit
Abubakari Samori, Issah
author_role author
author2 Rashad Baker, Mohammed
Lakshmi Padmaja, D.
Puviarasi, R.
Mann, Suman
Tiwari, Mohit
Abubakari Samori, Issah
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Panduro Ramirez, Jeidy Gisell
Rashad Baker, Mohammed
Lakshmi Padmaja, D.
Puviarasi, R.
Mann, Suman
Tiwari, Mohit
Abubakari Samori, Issah
dc.subject.es_PE.fl_str_mv Neuroimaging
Machine Learning
topic Neuroimaging
Machine Learning
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.03
description Critical ML or CML is a critical approach development of the standard ML (SML) procedure. Conventional ML (ML) is being used in radiology departments where complex neuroimages are discriminated using ML technology. Radiologists and researchers found that sole decision by the ML algorithms is not accurate enough to implement the treatment procedure. Thus, an intelligent decision is required further by the radiologists after evaluating the ML outcomes. The current research is based on the critical ML, where radiologists’ critical thinking ability, IQ (intelligence quotient), and experience in radiology have been examined to understand how these factors affect the accuracy of neuroimaging discrimination. A primary quantitative survey has been carried out, and the data were analysed in IBM SPSS. The results showed that experience in works has a positive impact on neuroimaging discrimination accuracy. IQ and trained ML are also responsible for improving the accuracy as well. Thus, radiologists with more experience in that field are able to improve the discriminative and diagnostic capability of CML.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-27T17:49:21Z
dc.date.available.none.fl_str_mv 2022-07-27T17:49:21Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1748-6718
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/5815
dc.identifier.journal.es_PE.fl_str_mv Computational and mathematical methods in medicine
dc.identifier.doi.none.fl_str_mv http://doi.org/10.1155/2022/6501975
identifier_str_mv 1748-6718
Computational and mathematical methods in medicine
url https://hdl.handle.net/20.500.12867/5815
http://doi.org/10.1155/2022/6501975
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Hindawi
dc.publisher.country.es_PE.fl_str_mv US
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/5815/1/J.Panduro_CMMM_Articulo_eng_2022.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5815/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5815/3/J.Panduro_CMMM_Articulo_eng_2022.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5815/4/J.Panduro_CMMM_Articulo_eng_2022.pdf.jpg
bitstream.checksum.fl_str_mv c44f0482d2dc4dc954fb863ba586b547
8a4605be74aa9ea9d79846c1fba20a33
96942b65d12d26df6d9aa2891b363381
542f167f57d957f4888ce88bcab6c2d9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984912275275776
spelling Panduro Ramirez, Jeidy GisellRashad Baker, MohammedLakshmi Padmaja, D.Puviarasi, R.Mann, SumanTiwari, MohitAbubakari Samori, Issah2022-07-27T17:49:21Z2022-07-27T17:49:21Z20221748-6718https://hdl.handle.net/20.500.12867/5815Computational and mathematical methods in medicinehttp://doi.org/10.1155/2022/6501975Critical ML or CML is a critical approach development of the standard ML (SML) procedure. Conventional ML (ML) is being used in radiology departments where complex neuroimages are discriminated using ML technology. Radiologists and researchers found that sole decision by the ML algorithms is not accurate enough to implement the treatment procedure. Thus, an intelligent decision is required further by the radiologists after evaluating the ML outcomes. The current research is based on the critical ML, where radiologists’ critical thinking ability, IQ (intelligence quotient), and experience in radiology have been examined to understand how these factors affect the accuracy of neuroimaging discrimination. A primary quantitative survey has been carried out, and the data were analysed in IBM SPSS. The results showed that experience in works has a positive impact on neuroimaging discrimination accuracy. IQ and trained ML are also responsible for improving the accuracy as well. Thus, radiologists with more experience in that field are able to improve the discriminative and diagnostic capability of CML.Campus Ateapplication/pdfspaHindawiUSinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPNeuroimagingMachine Learninghttps://purl.org/pe-repo/ocde/ford#2.02.03Implementing critical machine learning (ML) approaches for generating robust discriminative neuroimaging representations using structural equation model (SEM)info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALJ.Panduro_CMMM_Articulo_eng_2022.pdfJ.Panduro_CMMM_Articulo_eng_2022.pdfapplication/pdf1320324http://repositorio.utp.edu.pe/bitstream/20.500.12867/5815/1/J.Panduro_CMMM_Articulo_eng_2022.pdfc44f0482d2dc4dc954fb863ba586b547MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/5815/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTJ.Panduro_CMMM_Articulo_eng_2022.pdf.txtJ.Panduro_CMMM_Articulo_eng_2022.pdf.txtExtracted texttext/plain49568http://repositorio.utp.edu.pe/bitstream/20.500.12867/5815/3/J.Panduro_CMMM_Articulo_eng_2022.pdf.txt96942b65d12d26df6d9aa2891b363381MD53THUMBNAILJ.Panduro_CMMM_Articulo_eng_2022.pdf.jpgJ.Panduro_CMMM_Articulo_eng_2022.pdf.jpgGenerated Thumbnailimage/jpeg19561http://repositorio.utp.edu.pe/bitstream/20.500.12867/5815/4/J.Panduro_CMMM_Articulo_eng_2022.pdf.jpg542f167f57d957f4888ce88bcab6c2d9MD5420.500.12867/5815oai:repositorio.utp.edu.pe:20.500.12867/58152022-08-06 17:04:09.373Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.945474
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).