Implementing critical machine learning (ML) approaches for generating robust discriminative neuroimaging representations using structural equation model (SEM)
Descripción del Articulo
Critical ML or CML is a critical approach development of the standard ML (SML) procedure. Conventional ML (ML) is being used in radiology departments where complex neuroimages are discriminated using ML technology. Radiologists and researchers found that sole decision by the ML algorithms is not acc...
| Autores: | , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/5815 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/5815 http://doi.org/10.1155/2022/6501975 |
| Nivel de acceso: | acceso abierto |
| Materia: | Neuroimaging Machine Learning https://purl.org/pe-repo/ocde/ford#2.02.03 |
| id |
UTPD_3543808f64a285fd205eeb4249411071 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/5815 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Implementing critical machine learning (ML) approaches for generating robust discriminative neuroimaging representations using structural equation model (SEM) |
| title |
Implementing critical machine learning (ML) approaches for generating robust discriminative neuroimaging representations using structural equation model (SEM) |
| spellingShingle |
Implementing critical machine learning (ML) approaches for generating robust discriminative neuroimaging representations using structural equation model (SEM) Panduro Ramirez, Jeidy Gisell Neuroimaging Machine Learning https://purl.org/pe-repo/ocde/ford#2.02.03 |
| title_short |
Implementing critical machine learning (ML) approaches for generating robust discriminative neuroimaging representations using structural equation model (SEM) |
| title_full |
Implementing critical machine learning (ML) approaches for generating robust discriminative neuroimaging representations using structural equation model (SEM) |
| title_fullStr |
Implementing critical machine learning (ML) approaches for generating robust discriminative neuroimaging representations using structural equation model (SEM) |
| title_full_unstemmed |
Implementing critical machine learning (ML) approaches for generating robust discriminative neuroimaging representations using structural equation model (SEM) |
| title_sort |
Implementing critical machine learning (ML) approaches for generating robust discriminative neuroimaging representations using structural equation model (SEM) |
| author |
Panduro Ramirez, Jeidy Gisell |
| author_facet |
Panduro Ramirez, Jeidy Gisell Rashad Baker, Mohammed Lakshmi Padmaja, D. Puviarasi, R. Mann, Suman Tiwari, Mohit Abubakari Samori, Issah |
| author_role |
author |
| author2 |
Rashad Baker, Mohammed Lakshmi Padmaja, D. Puviarasi, R. Mann, Suman Tiwari, Mohit Abubakari Samori, Issah |
| author2_role |
author author author author author author |
| dc.contributor.author.fl_str_mv |
Panduro Ramirez, Jeidy Gisell Rashad Baker, Mohammed Lakshmi Padmaja, D. Puviarasi, R. Mann, Suman Tiwari, Mohit Abubakari Samori, Issah |
| dc.subject.es_PE.fl_str_mv |
Neuroimaging Machine Learning |
| topic |
Neuroimaging Machine Learning https://purl.org/pe-repo/ocde/ford#2.02.03 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.03 |
| description |
Critical ML or CML is a critical approach development of the standard ML (SML) procedure. Conventional ML (ML) is being used in radiology departments where complex neuroimages are discriminated using ML technology. Radiologists and researchers found that sole decision by the ML algorithms is not accurate enough to implement the treatment procedure. Thus, an intelligent decision is required further by the radiologists after evaluating the ML outcomes. The current research is based on the critical ML, where radiologists’ critical thinking ability, IQ (intelligence quotient), and experience in radiology have been examined to understand how these factors affect the accuracy of neuroimaging discrimination. A primary quantitative survey has been carried out, and the data were analysed in IBM SPSS. The results showed that experience in works has a positive impact on neuroimaging discrimination accuracy. IQ and trained ML are also responsible for improving the accuracy as well. Thus, radiologists with more experience in that field are able to improve the discriminative and diagnostic capability of CML. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2022-07-27T17:49:21Z |
| dc.date.available.none.fl_str_mv |
2022-07-27T17:49:21Z |
| dc.date.issued.fl_str_mv |
2022 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
1748-6718 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/5815 |
| dc.identifier.journal.es_PE.fl_str_mv |
Computational and mathematical methods in medicine |
| dc.identifier.doi.none.fl_str_mv |
http://doi.org/10.1155/2022/6501975 |
| identifier_str_mv |
1748-6718 Computational and mathematical methods in medicine |
| url |
https://hdl.handle.net/20.500.12867/5815 http://doi.org/10.1155/2022/6501975 |
| dc.language.iso.es_PE.fl_str_mv |
spa |
| language |
spa |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Hindawi |
| dc.publisher.country.es_PE.fl_str_mv |
US |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5815/1/J.Panduro_CMMM_Articulo_eng_2022.pdf http://repositorio.utp.edu.pe/bitstream/20.500.12867/5815/2/license.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/5815/3/J.Panduro_CMMM_Articulo_eng_2022.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/5815/4/J.Panduro_CMMM_Articulo_eng_2022.pdf.jpg |
| bitstream.checksum.fl_str_mv |
c44f0482d2dc4dc954fb863ba586b547 8a4605be74aa9ea9d79846c1fba20a33 96942b65d12d26df6d9aa2891b363381 542f167f57d957f4888ce88bcab6c2d9 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1817984912275275776 |
| spelling |
Panduro Ramirez, Jeidy GisellRashad Baker, MohammedLakshmi Padmaja, D.Puviarasi, R.Mann, SumanTiwari, MohitAbubakari Samori, Issah2022-07-27T17:49:21Z2022-07-27T17:49:21Z20221748-6718https://hdl.handle.net/20.500.12867/5815Computational and mathematical methods in medicinehttp://doi.org/10.1155/2022/6501975Critical ML or CML is a critical approach development of the standard ML (SML) procedure. Conventional ML (ML) is being used in radiology departments where complex neuroimages are discriminated using ML technology. Radiologists and researchers found that sole decision by the ML algorithms is not accurate enough to implement the treatment procedure. Thus, an intelligent decision is required further by the radiologists after evaluating the ML outcomes. The current research is based on the critical ML, where radiologists’ critical thinking ability, IQ (intelligence quotient), and experience in radiology have been examined to understand how these factors affect the accuracy of neuroimaging discrimination. A primary quantitative survey has been carried out, and the data were analysed in IBM SPSS. The results showed that experience in works has a positive impact on neuroimaging discrimination accuracy. IQ and trained ML are also responsible for improving the accuracy as well. Thus, radiologists with more experience in that field are able to improve the discriminative and diagnostic capability of CML.Campus Ateapplication/pdfspaHindawiUSinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPNeuroimagingMachine Learninghttps://purl.org/pe-repo/ocde/ford#2.02.03Implementing critical machine learning (ML) approaches for generating robust discriminative neuroimaging representations using structural equation model (SEM)info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALJ.Panduro_CMMM_Articulo_eng_2022.pdfJ.Panduro_CMMM_Articulo_eng_2022.pdfapplication/pdf1320324http://repositorio.utp.edu.pe/bitstream/20.500.12867/5815/1/J.Panduro_CMMM_Articulo_eng_2022.pdfc44f0482d2dc4dc954fb863ba586b547MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/5815/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTJ.Panduro_CMMM_Articulo_eng_2022.pdf.txtJ.Panduro_CMMM_Articulo_eng_2022.pdf.txtExtracted texttext/plain49568http://repositorio.utp.edu.pe/bitstream/20.500.12867/5815/3/J.Panduro_CMMM_Articulo_eng_2022.pdf.txt96942b65d12d26df6d9aa2891b363381MD53THUMBNAILJ.Panduro_CMMM_Articulo_eng_2022.pdf.jpgJ.Panduro_CMMM_Articulo_eng_2022.pdf.jpgGenerated Thumbnailimage/jpeg19561http://repositorio.utp.edu.pe/bitstream/20.500.12867/5815/4/J.Panduro_CMMM_Articulo_eng_2022.pdf.jpg542f167f57d957f4888ce88bcab6c2d9MD5420.500.12867/5815oai:repositorio.utp.edu.pe:20.500.12867/58152022-08-06 17:04:09.373Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.945474 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).