A drone system with an object identification algorithm for tracking dengue disease
Descripción del Articulo
In recent decades, it has been shown that epidemiological surveillance is one of the most valuable tool that public health has, since it allows us to have an overview of the population general health, thus allowing to anticipate outbreaks of epidemics by helping in timely interventions. Currently th...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Tecnológica del Perú |
Repositorio: | UTP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/6341 |
Enlace del recurso: | https://hdl.handle.net/20.500.12867/6341 http://10.14569/IJACSA.2022.0131092 |
Nivel de acceso: | acceso abierto |
Materia: | Epidemiological surveillance Drones Artificial neural networks Recognition algorithms https://purl.org/pe-repo/ocde/ford#1.02.01 https://purl.org/pe-repo/ocde/ford#3.03.00 |
id |
UTPD_2c0d1b22e5c898e09873c2e441e0679c |
---|---|
oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/6341 |
network_acronym_str |
UTPD |
network_name_str |
UTP-Institucional |
repository_id_str |
4782 |
dc.title.es_PE.fl_str_mv |
A drone system with an object identification algorithm for tracking dengue disease |
title |
A drone system with an object identification algorithm for tracking dengue disease |
spellingShingle |
A drone system with an object identification algorithm for tracking dengue disease Morán Landa, Diego Epidemiological surveillance Drones Artificial neural networks Recognition algorithms https://purl.org/pe-repo/ocde/ford#1.02.01 https://purl.org/pe-repo/ocde/ford#3.03.00 |
title_short |
A drone system with an object identification algorithm for tracking dengue disease |
title_full |
A drone system with an object identification algorithm for tracking dengue disease |
title_fullStr |
A drone system with an object identification algorithm for tracking dengue disease |
title_full_unstemmed |
A drone system with an object identification algorithm for tracking dengue disease |
title_sort |
A drone system with an object identification algorithm for tracking dengue disease |
author |
Morán Landa, Diego |
author_facet |
Morán Landa, Diego Del Rosario Damián, María Fiorela Portillo Mendoza, Pedro Miguel Sotomayor Beltran, Carlos Alberto |
author_role |
author |
author2 |
Del Rosario Damián, María Fiorela Portillo Mendoza, Pedro Miguel Sotomayor Beltran, Carlos Alberto |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Morán Landa, Diego Del Rosario Damián, María Fiorela Portillo Mendoza, Pedro Miguel Sotomayor Beltran, Carlos Alberto |
dc.subject.es_PE.fl_str_mv |
Epidemiological surveillance Drones Artificial neural networks Recognition algorithms |
topic |
Epidemiological surveillance Drones Artificial neural networks Recognition algorithms https://purl.org/pe-repo/ocde/ford#1.02.01 https://purl.org/pe-repo/ocde/ford#3.03.00 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.01 https://purl.org/pe-repo/ocde/ford#3.03.00 |
description |
In recent decades, it has been shown that epidemiological surveillance is one of the most valuable tool that public health has, since it allows us to have an overview of the population general health, thus allowing to anticipate outbreaks of epidemics by helping in timely interventions. Currently there is an increase in cases of dengue disease in several regions of Peru. Therefore, to control this outbreak and to help population centers and human settlements that are far from the city this work puts forward a drone system with an object recognition algorithm. Drones are very efficient in terms of surveillance, allowing easy access to places that are difficult for humans. In this way, drones can carry out the field work that is required in epidemiological surveillance, carrying out photography or video work in real time, and thus identifying infectious foci of diverse diseases. In this work, an object detection algorithm that uses convolutional neural networks and a stable detection model is designed, this allows the detection of water reservoirs that are possible infectious sources of dengue. In addition the efficiency of the algorithm is evaluated through the statistical curves of precision and sensitivity that result of the training of the neural network. To validate the efficiency obtained, the model was applied to test images related to dengue, achieving an efficiency of 99.2%. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-12-15T18:22:00Z |
dc.date.available.none.fl_str_mv |
2022-12-15T18:22:00Z |
dc.date.issued.fl_str_mv |
2022 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2156-5570 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/6341 |
dc.identifier.journal.es_PE.fl_str_mv |
International Journal of Advanced Computer Science and Applications |
dc.identifier.doi.none.fl_str_mv |
http://10.14569/IJACSA.2022.0131092 |
identifier_str_mv |
2156-5570 International Journal of Advanced Computer Science and Applications |
url |
https://hdl.handle.net/20.500.12867/6341 http://10.14569/IJACSA.2022.0131092 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.none.fl_str_mv |
International Journal of Advanced Computer Science and Applications;vol. 13, n° 10, pp. 775-781 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
The Science and Information Organization |
dc.publisher.country.es_PE.fl_str_mv |
GB |
dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
instname_str |
Universidad Tecnológica del Perú |
instacron_str |
UTP |
institution |
UTP |
reponame_str |
UTP-Institucional |
collection |
UTP-Institucional |
bitstream.url.fl_str_mv |
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6341/2/license.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/6341/3/D.Moran_M.Damian_P.Portillo_C.Sotomayor_Articul_IAJCSA_eng_2022.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/6341/6/D.Moran_M.Damian_P.Portillo_C.Sotomayor_Articulo_IAJCSA_eng_2022.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/6341/4/D.Moran_M.Damian_P.Portillo_C.Sotomayor_Articul_IAJCSA_eng_2022.pdf.jpg http://repositorio.utp.edu.pe/bitstream/20.500.12867/6341/7/D.Moran_M.Damian_P.Portillo_C.Sotomayor_Articulo_IAJCSA_eng_2022.pdf.jpg http://repositorio.utp.edu.pe/bitstream/20.500.12867/6341/5/D.Moran_M.Damian_P.Portillo_C.Sotomayor_Articulo_IAJCSA_eng_2022.pdf |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 d5dc6b6d08537c78879d231e7a3504f1 d5dc6b6d08537c78879d231e7a3504f1 df7c25af78a7382fbd45ff92254a770e df7c25af78a7382fbd45ff92254a770e 632aaf208ecf203e0514f27ad5695965 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Tecnológica del Perú |
repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
_version_ |
1817984959192760320 |
spelling |
Morán Landa, DiegoDel Rosario Damián, María FiorelaPortillo Mendoza, Pedro MiguelSotomayor Beltran, Carlos Alberto2022-12-15T18:22:00Z2022-12-15T18:22:00Z20222156-5570https://hdl.handle.net/20.500.12867/6341International Journal of Advanced Computer Science and Applicationshttp://10.14569/IJACSA.2022.0131092In recent decades, it has been shown that epidemiological surveillance is one of the most valuable tool that public health has, since it allows us to have an overview of the population general health, thus allowing to anticipate outbreaks of epidemics by helping in timely interventions. Currently there is an increase in cases of dengue disease in several regions of Peru. Therefore, to control this outbreak and to help population centers and human settlements that are far from the city this work puts forward a drone system with an object recognition algorithm. Drones are very efficient in terms of surveillance, allowing easy access to places that are difficult for humans. In this way, drones can carry out the field work that is required in epidemiological surveillance, carrying out photography or video work in real time, and thus identifying infectious foci of diverse diseases. In this work, an object detection algorithm that uses convolutional neural networks and a stable detection model is designed, this allows the detection of water reservoirs that are possible infectious sources of dengue. In addition the efficiency of the algorithm is evaluated through the statistical curves of precision and sensitivity that result of the training of the neural network. To validate the efficiency obtained, the model was applied to test images related to dengue, achieving an efficiency of 99.2%.Campus Lima Centroapplication/pdfengThe Science and Information OrganizationGBInternational Journal of Advanced Computer Science and Applications;vol. 13, n° 10, pp. 775-781info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPEpidemiological surveillanceDronesArtificial neural networksRecognition algorithmshttps://purl.org/pe-repo/ocde/ford#1.02.01https://purl.org/pe-repo/ocde/ford#3.03.00A drone system with an object identification algorithm for tracking dengue diseaseinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/6341/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTD.Moran_M.Damian_P.Portillo_C.Sotomayor_Articul_IAJCSA_eng_2022.pdf.txtD.Moran_M.Damian_P.Portillo_C.Sotomayor_Articul_IAJCSA_eng_2022.pdf.txtExtracted texttext/plain26502http://repositorio.utp.edu.pe/bitstream/20.500.12867/6341/3/D.Moran_M.Damian_P.Portillo_C.Sotomayor_Articul_IAJCSA_eng_2022.pdf.txtd5dc6b6d08537c78879d231e7a3504f1MD53D.Moran_M.Damian_P.Portillo_C.Sotomayor_Articulo_IAJCSA_eng_2022.pdf.txtD.Moran_M.Damian_P.Portillo_C.Sotomayor_Articulo_IAJCSA_eng_2022.pdf.txtExtracted texttext/plain26502http://repositorio.utp.edu.pe/bitstream/20.500.12867/6341/6/D.Moran_M.Damian_P.Portillo_C.Sotomayor_Articulo_IAJCSA_eng_2022.pdf.txtd5dc6b6d08537c78879d231e7a3504f1MD56THUMBNAILD.Moran_M.Damian_P.Portillo_C.Sotomayor_Articul_IAJCSA_eng_2022.pdf.jpgD.Moran_M.Damian_P.Portillo_C.Sotomayor_Articul_IAJCSA_eng_2022.pdf.jpgGenerated Thumbnailimage/jpeg24675http://repositorio.utp.edu.pe/bitstream/20.500.12867/6341/4/D.Moran_M.Damian_P.Portillo_C.Sotomayor_Articul_IAJCSA_eng_2022.pdf.jpgdf7c25af78a7382fbd45ff92254a770eMD54D.Moran_M.Damian_P.Portillo_C.Sotomayor_Articulo_IAJCSA_eng_2022.pdf.jpgD.Moran_M.Damian_P.Portillo_C.Sotomayor_Articulo_IAJCSA_eng_2022.pdf.jpgGenerated Thumbnailimage/jpeg24675http://repositorio.utp.edu.pe/bitstream/20.500.12867/6341/7/D.Moran_M.Damian_P.Portillo_C.Sotomayor_Articulo_IAJCSA_eng_2022.pdf.jpgdf7c25af78a7382fbd45ff92254a770eMD57ORIGINALD.Moran_M.Damian_P.Portillo_C.Sotomayor_Articulo_IAJCSA_eng_2022.pdfD.Moran_M.Damian_P.Portillo_C.Sotomayor_Articulo_IAJCSA_eng_2022.pdfapplication/pdf1298350http://repositorio.utp.edu.pe/bitstream/20.500.12867/6341/5/D.Moran_M.Damian_P.Portillo_C.Sotomayor_Articulo_IAJCSA_eng_2022.pdf632aaf208ecf203e0514f27ad5695965MD5520.500.12867/6341oai:repositorio.utp.edu.pe:20.500.12867/63412022-12-15 17:03:41.042Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.95948 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).