A drone system with an object identification algorithm for tracking dengue disease

Descripción del Articulo

In recent decades, it has been shown that epidemiological surveillance is one of the most valuable tool that public health has, since it allows us to have an overview of the population general health, thus allowing to anticipate outbreaks of epidemics by helping in timely interventions. Currently th...

Descripción completa

Detalles Bibliográficos
Autores: Morán Landa, Diego, Del Rosario Damián, María Fiorela, Portillo Mendoza, Pedro Miguel, Sotomayor Beltran, Carlos Alberto
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/6341
Enlace del recurso:https://hdl.handle.net/20.500.12867/6341
http://10.14569/IJACSA.2022.0131092
Nivel de acceso:acceso abierto
Materia:Epidemiological surveillance
Drones
Artificial neural networks
Recognition algorithms
https://purl.org/pe-repo/ocde/ford#1.02.01
https://purl.org/pe-repo/ocde/ford#3.03.00
Descripción
Sumario:In recent decades, it has been shown that epidemiological surveillance is one of the most valuable tool that public health has, since it allows us to have an overview of the population general health, thus allowing to anticipate outbreaks of epidemics by helping in timely interventions. Currently there is an increase in cases of dengue disease in several regions of Peru. Therefore, to control this outbreak and to help population centers and human settlements that are far from the city this work puts forward a drone system with an object recognition algorithm. Drones are very efficient in terms of surveillance, allowing easy access to places that are difficult for humans. In this way, drones can carry out the field work that is required in epidemiological surveillance, carrying out photography or video work in real time, and thus identifying infectious foci of diverse diseases. In this work, an object detection algorithm that uses convolutional neural networks and a stable detection model is designed, this allows the detection of water reservoirs that are possible infectious sources of dengue. In addition the efficiency of the algorithm is evaluated through the statistical curves of precision and sensitivity that result of the training of the neural network. To validate the efficiency obtained, the model was applied to test images related to dengue, achieving an efficiency of 99.2%.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).