Estimation of the optimal number of neurons in extreme learning machine using simulated annealing and the golden section
Descripción del Articulo
Conferencia de la IX International Conference Days of Applied Mathematics (IX ICDAM)
| Autores: | , , , , , , , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/7739 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/7739 https://doi.org/10.1088/1742-6596/2515/1/012003 |
| Nivel de acceso: | acceso abierto |
| Materia: | Artificial neural networks Machine learning Supervised learning Heuristic optimization methods https://purl.org/pe-repo/ocde/ford#1.02.00 |
| id |
UTPD_26f177050fc2b0d87b68e4770a03e1dc |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/7739 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Estimation of the optimal number of neurons in extreme learning machine using simulated annealing and the golden section |
| title |
Estimation of the optimal number of neurons in extreme learning machine using simulated annealing and the golden section |
| spellingShingle |
Estimation of the optimal number of neurons in extreme learning machine using simulated annealing and the golden section Lozada Yavina, Rafael Alejandro Artificial neural networks Machine learning Supervised learning Heuristic optimization methods https://purl.org/pe-repo/ocde/ford#1.02.00 |
| title_short |
Estimation of the optimal number of neurons in extreme learning machine using simulated annealing and the golden section |
| title_full |
Estimation of the optimal number of neurons in extreme learning machine using simulated annealing and the golden section |
| title_fullStr |
Estimation of the optimal number of neurons in extreme learning machine using simulated annealing and the golden section |
| title_full_unstemmed |
Estimation of the optimal number of neurons in extreme learning machine using simulated annealing and the golden section |
| title_sort |
Estimation of the optimal number of neurons in extreme learning machine using simulated annealing and the golden section |
| author |
Lozada Yavina, Rafael Alejandro |
| author_facet |
Lozada Yavina, Rafael Alejandro Gelvez-Almeida, E. Mora, M. Huérfano-Maldonado, Y. Salazar-Jurado, E. Martínez-Jeraldo, N. Baldera-Moreno, Y. Tobar, L. |
| author_role |
author |
| author2 |
Gelvez-Almeida, E. Mora, M. Huérfano-Maldonado, Y. Salazar-Jurado, E. Martínez-Jeraldo, N. Baldera-Moreno, Y. Tobar, L. |
| author2_role |
author author author author author author author |
| dc.contributor.author.fl_str_mv |
Lozada Yavina, Rafael Alejandro Gelvez-Almeida, E. Mora, M. Huérfano-Maldonado, Y. Salazar-Jurado, E. Martínez-Jeraldo, N. Baldera-Moreno, Y. Tobar, L. |
| dc.subject.es_PE.fl_str_mv |
Artificial neural networks Machine learning Supervised learning Heuristic optimization methods |
| topic |
Artificial neural networks Machine learning Supervised learning Heuristic optimization methods https://purl.org/pe-repo/ocde/ford#1.02.00 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.00 |
| description |
Conferencia de la IX International Conference Days of Applied Mathematics (IX ICDAM) |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-10-19T18:46:01Z |
| dc.date.available.none.fl_str_mv |
2023-10-19T18:46:01Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
1742-6596 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/7739 |
| dc.identifier.journal.es_PE.fl_str_mv |
Journal of Physics: Conference Series |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1088/1742-6596/2515/1/012003 |
| identifier_str_mv |
1742-6596 Journal of Physics: Conference Series |
| url |
https://hdl.handle.net/20.500.12867/7739 https://doi.org/10.1088/1742-6596/2515/1/012003 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofseries.none.fl_str_mv |
Journal of Physics: Conference Series;vol. 2515 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
IOP Publishing |
| dc.publisher.country.es_PE.fl_str_mv |
GB |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/171656c3-62e2-45b5-b7e3-f8a8253cb946/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/53029bde-253b-4b34-9eb5-10787556203b/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/af6bd08d-c687-42dc-a885-434232ff1d1a/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/cc68f776-a5c4-45a1-8207-0ff24194f632/download |
| bitstream.checksum.fl_str_mv |
e889268b2ea328898e8ab3e3952e6ce5 ca054a4cc045feaf6f63d81809f8d3eb 4bed8a5e82682ff928317f7b702aff43 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1856036614054084608 |
| spelling |
Lozada Yavina, Rafael AlejandroGelvez-Almeida, E.Mora, M.Huérfano-Maldonado, Y.Salazar-Jurado, E.Martínez-Jeraldo, N.Baldera-Moreno, Y.Tobar, L.2023-10-19T18:46:01Z2023-10-19T18:46:01Z20231742-6596https://hdl.handle.net/20.500.12867/7739Journal of Physics: Conference Serieshttps://doi.org/10.1088/1742-6596/2515/1/012003Conferencia de la IX International Conference Days of Applied Mathematics (IX ICDAM)Extreme learning machine is a neural network algorithm widely accepted in the scientific community due to the simplicity of the model and its good results in classification and regression problems; digital image processing, medical diagnosis, and signal recognition are some applications in the field of physics addressed with these neural networks. The algorithm must be executed with an adequate number of neurons in the hidden layer to obtain good results. Identifying the appropriate number of neurons in the hidden layer is an open problem in the extreme learning machine field. The search process has a high computational cost if carried out sequentially, given the complexity of the calculations as the number of neurons increases. In this work, we use the search of the golden section and simulated annealing as heuristic methods to calculate the appropriate number of neurons in the hidden layer of an Extreme Learning Machine; for the experiments, three real databases were used for the classification problem and a synthetic database for the regression problem. The results show that the search for the appropriate number of neurons is accelerated up to 4.5× times with simulated annealing and up to 95.7× times with the golden section search compared to a sequential method in the highest-dimensional database.Campus San Juan de Luriganchoapplication/pdfengIOP PublishingGBJournal of Physics: Conference Series;vol. 2515info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPArtificial neural networksMachine learningSupervised learningHeuristic optimization methodshttps://purl.org/pe-repo/ocde/ford#1.02.00Estimation of the optimal number of neurons in extreme learning machine using simulated annealing and the golden sectioninfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionTEXTR.Lozada_Articulo_2023.pdf.txtR.Lozada_Articulo_2023.pdf.txtExtracted texttext/plain22644https://repositorio.utp.edu.pe/backend/api/core/bitstreams/171656c3-62e2-45b5-b7e3-f8a8253cb946/downloade889268b2ea328898e8ab3e3952e6ce5MD56THUMBNAILR.Lozada_Articulo_2023.pdf.jpgR.Lozada_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg33656https://repositorio.utp.edu.pe/backend/api/core/bitstreams/53029bde-253b-4b34-9eb5-10787556203b/downloadca054a4cc045feaf6f63d81809f8d3ebMD57ORIGINALR.Lozada_Articulo_2023.pdfR.Lozada_Articulo_2023.pdfapplication/pdf492581https://repositorio.utp.edu.pe/backend/api/core/bitstreams/af6bd08d-c687-42dc-a885-434232ff1d1a/download4bed8a5e82682ff928317f7b702aff43MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/cc68f776-a5c4-45a1-8207-0ff24194f632/download8a4605be74aa9ea9d79846c1fba20a33MD5220.500.12867/7739oai:repositorio.utp.edu.pe:20.500.12867/77392025-11-30 17:51:33.302https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.433241 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).