Intelligent traffic light system using deep reinforcement learning

Descripción del Articulo

Currently, population growth in cities results in an increase in urban vehicle traffic. That is why it is necessary to improve the quality of life of citizens based on the improvement of transport control services. To solve this problem, there are solutions, related to the improvement of the road in...

Descripción completa

Detalles Bibliográficos
Autores: Yauri Rodríguez, Ricardo, Silva, Frank, Huaccho, Ademir, Llerena, Oscar
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/8199
Enlace del recurso:https://hdl.handle.net/20.500.12867/8199
http://doi.org/10.37394/23203.2023.18.26
Nivel de acceso:acceso abierto
Materia:Reinforcement learning
Traffic light
Artificial neural networks
Image processing
https://purl.org/pe-repo/ocde/ford#1.02.00
id UTPD_0c01c915011eedc3e2ffd6d45b3f6c63
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/8199
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Intelligent traffic light system using deep reinforcement learning
title Intelligent traffic light system using deep reinforcement learning
spellingShingle Intelligent traffic light system using deep reinforcement learning
Yauri Rodríguez, Ricardo
Reinforcement learning
Traffic light
Artificial neural networks
Image processing
https://purl.org/pe-repo/ocde/ford#1.02.00
title_short Intelligent traffic light system using deep reinforcement learning
title_full Intelligent traffic light system using deep reinforcement learning
title_fullStr Intelligent traffic light system using deep reinforcement learning
title_full_unstemmed Intelligent traffic light system using deep reinforcement learning
title_sort Intelligent traffic light system using deep reinforcement learning
author Yauri Rodríguez, Ricardo
author_facet Yauri Rodríguez, Ricardo
Silva, Frank
Huaccho, Ademir
Llerena, Oscar
author_role author
author2 Silva, Frank
Huaccho, Ademir
Llerena, Oscar
author2_role author
author
author
dc.contributor.author.fl_str_mv Yauri Rodríguez, Ricardo
Silva, Frank
Huaccho, Ademir
Llerena, Oscar
dc.subject.es_PE.fl_str_mv Reinforcement learning
Traffic light
Artificial neural networks
Image processing
topic Reinforcement learning
Traffic light
Artificial neural networks
Image processing
https://purl.org/pe-repo/ocde/ford#1.02.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.00
description Currently, population growth in cities results in an increase in urban vehicle traffic. That is why it is necessary to improve the quality of life of citizens based on the improvement of transport control services. To solve this problem, there are solutions, related to the improvement of the road infrastructure by increasing the roads or paths. One of the solutions is using traffic lights that allow traffic regulation automatically with machine learning techniques. That is why the implementation of an intelligent traffic light system with automatic learning by reinforcement is proposed to reduce vehicular and pedestrian traffic. As a result, the use of the YOLOv4 tool allowed us to adequately count cars and people, differentiating them based on size and other characteristics. On the other hand, the position of the camera and its resolution is a key point for counting vehicles by detecting their contour. An improvement in time has been obtained using reinforcement learning, which depends on the number of episodes analyzed and affects the length of training time, where the analysis of 100 episodes takes around 12 hours on a Ryzen 7 computer with a graphics card built-in 2 GB.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2024-01-16T21:13:44Z
dc.date.available.none.fl_str_mv 2024-01-16T21:13:44Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2224-2856
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/8199
dc.identifier.journal.es_PE.fl_str_mv WSEAS Transactions on Systems and Control
dc.identifier.doi.none.fl_str_mv http://doi.org/10.37394/23203.2023.18.26
identifier_str_mv 2224-2856
WSEAS Transactions on Systems and Control
url https://hdl.handle.net/20.500.12867/8199
http://doi.org/10.37394/23203.2023.18.26
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv WSEAS Transactions on Systems and Control;vol. 18
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv World Scientific and Engineering Academy and Society
dc.publisher.country.es_PE.fl_str_mv GR
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/8199/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/8199/1/R.Yauri_Articulo_2023.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/8199/3/R.Yauri_Articulo_2023.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/8199/4/R.Yauri_Articulo_2023.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
1e20c3449df7c6aa46de9104e1c18983
4bc15217f1fe11e74e61d88d53364798
b411e85d078a4ec7d2ff10258d6f590a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984902488915968
spelling Yauri Rodríguez, RicardoSilva, FrankHuaccho, AdemirLlerena, Oscar2024-01-16T21:13:44Z2024-01-16T21:13:44Z20232224-2856https://hdl.handle.net/20.500.12867/8199WSEAS Transactions on Systems and Controlhttp://doi.org/10.37394/23203.2023.18.26Currently, population growth in cities results in an increase in urban vehicle traffic. That is why it is necessary to improve the quality of life of citizens based on the improvement of transport control services. To solve this problem, there are solutions, related to the improvement of the road infrastructure by increasing the roads or paths. One of the solutions is using traffic lights that allow traffic regulation automatically with machine learning techniques. That is why the implementation of an intelligent traffic light system with automatic learning by reinforcement is proposed to reduce vehicular and pedestrian traffic. As a result, the use of the YOLOv4 tool allowed us to adequately count cars and people, differentiating them based on size and other characteristics. On the other hand, the position of the camera and its resolution is a key point for counting vehicles by detecting their contour. An improvement in time has been obtained using reinforcement learning, which depends on the number of episodes analyzed and affects the length of training time, where the analysis of 100 episodes takes around 12 hours on a Ryzen 7 computer with a graphics card built-in 2 GB.Campus Lima Surapplication/pdfengWorld Scientific and Engineering Academy and SocietyGRWSEAS Transactions on Systems and Control;vol. 18info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPReinforcement learningTraffic lightArtificial neural networksImage processinghttps://purl.org/pe-repo/ocde/ford#1.02.00Intelligent traffic light system using deep reinforcement learninginfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/8199/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALR.Yauri_Articulo_2023.pdfR.Yauri_Articulo_2023.pdfapplication/pdf1573470http://repositorio.utp.edu.pe/bitstream/20.500.12867/8199/1/R.Yauri_Articulo_2023.pdf1e20c3449df7c6aa46de9104e1c18983MD51TEXTR.Yauri_Articulo_2023.pdf.txtR.Yauri_Articulo_2023.pdf.txtExtracted texttext/plain32818http://repositorio.utp.edu.pe/bitstream/20.500.12867/8199/3/R.Yauri_Articulo_2023.pdf.txt4bc15217f1fe11e74e61d88d53364798MD53THUMBNAILR.Yauri_Articulo_2023.pdf.jpgR.Yauri_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg24373http://repositorio.utp.edu.pe/bitstream/20.500.12867/8199/4/R.Yauri_Articulo_2023.pdf.jpgb411e85d078a4ec7d2ff10258d6f590aMD5420.500.12867/8199oai:repositorio.utp.edu.pe:20.500.12867/81992024-01-17 03:05:16.098Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.945474
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).