Intelligent traffic light system using deep reinforcement learning
Descripción del Articulo
Currently, population growth in cities results in an increase in urban vehicle traffic. That is why it is necessary to improve the quality of life of citizens based on the improvement of transport control services. To solve this problem, there are solutions, related to the improvement of the road in...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/8199 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/8199 http://doi.org/10.37394/23203.2023.18.26 |
| Nivel de acceso: | acceso abierto |
| Materia: | Reinforcement learning Traffic light Artificial neural networks Image processing https://purl.org/pe-repo/ocde/ford#1.02.00 |
| id |
UTPD_0c01c915011eedc3e2ffd6d45b3f6c63 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/8199 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Intelligent traffic light system using deep reinforcement learning |
| title |
Intelligent traffic light system using deep reinforcement learning |
| spellingShingle |
Intelligent traffic light system using deep reinforcement learning Yauri Rodríguez, Ricardo Reinforcement learning Traffic light Artificial neural networks Image processing https://purl.org/pe-repo/ocde/ford#1.02.00 |
| title_short |
Intelligent traffic light system using deep reinforcement learning |
| title_full |
Intelligent traffic light system using deep reinforcement learning |
| title_fullStr |
Intelligent traffic light system using deep reinforcement learning |
| title_full_unstemmed |
Intelligent traffic light system using deep reinforcement learning |
| title_sort |
Intelligent traffic light system using deep reinforcement learning |
| author |
Yauri Rodríguez, Ricardo |
| author_facet |
Yauri Rodríguez, Ricardo Silva, Frank Huaccho, Ademir Llerena, Oscar |
| author_role |
author |
| author2 |
Silva, Frank Huaccho, Ademir Llerena, Oscar |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Yauri Rodríguez, Ricardo Silva, Frank Huaccho, Ademir Llerena, Oscar |
| dc.subject.es_PE.fl_str_mv |
Reinforcement learning Traffic light Artificial neural networks Image processing |
| topic |
Reinforcement learning Traffic light Artificial neural networks Image processing https://purl.org/pe-repo/ocde/ford#1.02.00 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.00 |
| description |
Currently, population growth in cities results in an increase in urban vehicle traffic. That is why it is necessary to improve the quality of life of citizens based on the improvement of transport control services. To solve this problem, there are solutions, related to the improvement of the road infrastructure by increasing the roads or paths. One of the solutions is using traffic lights that allow traffic regulation automatically with machine learning techniques. That is why the implementation of an intelligent traffic light system with automatic learning by reinforcement is proposed to reduce vehicular and pedestrian traffic. As a result, the use of the YOLOv4 tool allowed us to adequately count cars and people, differentiating them based on size and other characteristics. On the other hand, the position of the camera and its resolution is a key point for counting vehicles by detecting their contour. An improvement in time has been obtained using reinforcement learning, which depends on the number of episodes analyzed and affects the length of training time, where the analysis of 100 episodes takes around 12 hours on a Ryzen 7 computer with a graphics card built-in 2 GB. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2024-01-16T21:13:44Z |
| dc.date.available.none.fl_str_mv |
2024-01-16T21:13:44Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2224-2856 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/8199 |
| dc.identifier.journal.es_PE.fl_str_mv |
WSEAS Transactions on Systems and Control |
| dc.identifier.doi.none.fl_str_mv |
http://doi.org/10.37394/23203.2023.18.26 |
| identifier_str_mv |
2224-2856 WSEAS Transactions on Systems and Control |
| url |
https://hdl.handle.net/20.500.12867/8199 http://doi.org/10.37394/23203.2023.18.26 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofseries.none.fl_str_mv |
WSEAS Transactions on Systems and Control;vol. 18 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
World Scientific and Engineering Academy and Society |
| dc.publisher.country.es_PE.fl_str_mv |
GR |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
http://repositorio.utp.edu.pe/bitstream/20.500.12867/8199/2/license.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/8199/1/R.Yauri_Articulo_2023.pdf http://repositorio.utp.edu.pe/bitstream/20.500.12867/8199/3/R.Yauri_Articulo_2023.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/8199/4/R.Yauri_Articulo_2023.pdf.jpg |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 1e20c3449df7c6aa46de9104e1c18983 4bc15217f1fe11e74e61d88d53364798 b411e85d078a4ec7d2ff10258d6f590a |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1817984902488915968 |
| spelling |
Yauri Rodríguez, RicardoSilva, FrankHuaccho, AdemirLlerena, Oscar2024-01-16T21:13:44Z2024-01-16T21:13:44Z20232224-2856https://hdl.handle.net/20.500.12867/8199WSEAS Transactions on Systems and Controlhttp://doi.org/10.37394/23203.2023.18.26Currently, population growth in cities results in an increase in urban vehicle traffic. That is why it is necessary to improve the quality of life of citizens based on the improvement of transport control services. To solve this problem, there are solutions, related to the improvement of the road infrastructure by increasing the roads or paths. One of the solutions is using traffic lights that allow traffic regulation automatically with machine learning techniques. That is why the implementation of an intelligent traffic light system with automatic learning by reinforcement is proposed to reduce vehicular and pedestrian traffic. As a result, the use of the YOLOv4 tool allowed us to adequately count cars and people, differentiating them based on size and other characteristics. On the other hand, the position of the camera and its resolution is a key point for counting vehicles by detecting their contour. An improvement in time has been obtained using reinforcement learning, which depends on the number of episodes analyzed and affects the length of training time, where the analysis of 100 episodes takes around 12 hours on a Ryzen 7 computer with a graphics card built-in 2 GB.Campus Lima Surapplication/pdfengWorld Scientific and Engineering Academy and SocietyGRWSEAS Transactions on Systems and Control;vol. 18info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPReinforcement learningTraffic lightArtificial neural networksImage processinghttps://purl.org/pe-repo/ocde/ford#1.02.00Intelligent traffic light system using deep reinforcement learninginfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/8199/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALR.Yauri_Articulo_2023.pdfR.Yauri_Articulo_2023.pdfapplication/pdf1573470http://repositorio.utp.edu.pe/bitstream/20.500.12867/8199/1/R.Yauri_Articulo_2023.pdf1e20c3449df7c6aa46de9104e1c18983MD51TEXTR.Yauri_Articulo_2023.pdf.txtR.Yauri_Articulo_2023.pdf.txtExtracted texttext/plain32818http://repositorio.utp.edu.pe/bitstream/20.500.12867/8199/3/R.Yauri_Articulo_2023.pdf.txt4bc15217f1fe11e74e61d88d53364798MD53THUMBNAILR.Yauri_Articulo_2023.pdf.jpgR.Yauri_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg24373http://repositorio.utp.edu.pe/bitstream/20.500.12867/8199/4/R.Yauri_Articulo_2023.pdf.jpgb411e85d078a4ec7d2ff10258d6f590aMD5420.500.12867/8199oai:repositorio.utp.edu.pe:20.500.12867/81992024-01-17 03:05:16.098Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.945474 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).