Validation of a Biomechanical Injury and Disease Assessment Platform Applying an Inertial-Based Biosensor and Axis Vector Computation

Descripción del Articulo

Inertial kinetics and kinematics have substantial influences on human biomechanical function. A new algorithm for Inertial Measurement Unit (IMU)-based motion tracking is presented in this work. The primary aims of this paper are to combine recent developments in improved biosensor technology with m...

Descripción completa

Detalles Bibliográficos
Autores: Kim, Wangdo, Vela Saavedra, Emir Augusto, Kohles, Sean S., Huayamave, Victor, Gonzalez, Oscar
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad de Ingeniería y tecnología
Repositorio:UTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utec.edu.pe:20.500.12815/476
Enlace del recurso:https://hdl.handle.net/20.500.12815/476
https://doi.org/10.3390/electronics12173694
Nivel de acceso:acceso abierto
Materia:Biosensors
Imu
Inertial Measurement Units
Instantaneous Axis Of Rotation
Instantaneous Axis-angle Representations
Inverse And Forward Kinematics
Motion Tracking Sensors
Quaternions
https://purl.org/pe-repo/ocde/ford#2.06.01
id UTEC_c72accfdc35fa6864023b5860eb58c56
oai_identifier_str oai:repositorio.utec.edu.pe:20.500.12815/476
network_acronym_str UTEC
network_name_str UTEC-Institucional
repository_id_str 4822
spelling Kim, WangdoVela Saavedra, Emir AugustoKohles, Sean S.Huayamave, VictorGonzalez, Oscar2025-10-28T20:12:52Z2025-10-28T20:12:52Z2023https://hdl.handle.net/20.500.12815/476https://doi.org/10.3390/electronics12173694ElectronicsInertial kinetics and kinematics have substantial influences on human biomechanical function. A new algorithm for Inertial Measurement Unit (IMU)-based motion tracking is presented in this work. The primary aims of this paper are to combine recent developments in improved biosensor technology with mainstream motion-tracking hardware to measure the overall performance of human movement based on joint axis-angle representations of limb rotation. This work describes an alternative approach to representing three-dimensional rotations using a normalized vector around which an identified joint angle defines the overall rotation, rather than a traditional Euler angle approach. Furthermore, IMUs allow for the direct measurement of joint angular velocities, offering the opportunity to increase the accuracy of instantaneous axis of rotation estimations. Although the axis-angle representation requires vector quotient algebra (quaternions) to define rotation, this approach may be preferred for many graphics, vision, and virtual reality software applications. The analytical method was validated with laboratory data gathered from an infant dummy leg’s flexion and extension knee movements and applied to a living subject’s upper limb movement. The results showed that the novel approach could reasonably handle a simple case and provide a detailed analysis of axis-angle migration. The described algorithm could play a notable role in the biomechanical analysis of human joints and offers a harbinger of IMU-based biosensors that may detect pathological patterns of joint disease and injury.Consejo Nacional de Ciencia, Tecnología e Innovación, N°PE501083944-2023-PROCIENCIAapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/BiosensorsImuInertial Measurement UnitsInstantaneous Axis Of RotationInstantaneous Axis-angle RepresentationsInverse And Forward KinematicsMotion Tracking SensorsQuaternionshttps://purl.org/pe-repo/ocde/ford#2.06.01Validation of a Biomechanical Injury and Disease Assessment Platform Applying an Inertial-Based Biosensor and Axis Vector Computationinfo:eu-repo/semantics/articlereponame:UTEC-Institucionalinstname:Universidad de Ingeniería y tecnologíainstacron:UTECORIGINAL12173694.html12173694.htmltext/html227http://repositorio.utec.edu.pe/bitstream/20.500.12815/476/1/12173694.html3551f48283a07e21f4c3917d7b2965ffMD51open accessTEXT12173694.html.txt12173694.html.txtExtracted texttext/plain5http://repositorio.utec.edu.pe/bitstream/20.500.12815/476/2/12173694.html.txt1ffa6afae980d20b989794057fdf02ceMD52open access20.500.12815/476oai:repositorio.utec.edu.pe:20.500.12815/4762025-10-29 03:00:27.609open accessRepositorio Institucional UTECrepositorio@utec.edu.pe
dc.title.es_PE.fl_str_mv Validation of a Biomechanical Injury and Disease Assessment Platform Applying an Inertial-Based Biosensor and Axis Vector Computation
title Validation of a Biomechanical Injury and Disease Assessment Platform Applying an Inertial-Based Biosensor and Axis Vector Computation
spellingShingle Validation of a Biomechanical Injury and Disease Assessment Platform Applying an Inertial-Based Biosensor and Axis Vector Computation
Kim, Wangdo
Biosensors
Imu
Inertial Measurement Units
Instantaneous Axis Of Rotation
Instantaneous Axis-angle Representations
Inverse And Forward Kinematics
Motion Tracking Sensors
Quaternions
https://purl.org/pe-repo/ocde/ford#2.06.01
title_short Validation of a Biomechanical Injury and Disease Assessment Platform Applying an Inertial-Based Biosensor and Axis Vector Computation
title_full Validation of a Biomechanical Injury and Disease Assessment Platform Applying an Inertial-Based Biosensor and Axis Vector Computation
title_fullStr Validation of a Biomechanical Injury and Disease Assessment Platform Applying an Inertial-Based Biosensor and Axis Vector Computation
title_full_unstemmed Validation of a Biomechanical Injury and Disease Assessment Platform Applying an Inertial-Based Biosensor and Axis Vector Computation
title_sort Validation of a Biomechanical Injury and Disease Assessment Platform Applying an Inertial-Based Biosensor and Axis Vector Computation
author Kim, Wangdo
author_facet Kim, Wangdo
Vela Saavedra, Emir Augusto
Kohles, Sean S.
Huayamave, Victor
Gonzalez, Oscar
author_role author
author2 Vela Saavedra, Emir Augusto
Kohles, Sean S.
Huayamave, Victor
Gonzalez, Oscar
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Kim, Wangdo
Vela Saavedra, Emir Augusto
Kohles, Sean S.
Huayamave, Victor
Gonzalez, Oscar
dc.subject.es_PE.fl_str_mv Biosensors
Imu
Inertial Measurement Units
Instantaneous Axis Of Rotation
Instantaneous Axis-angle Representations
Inverse And Forward Kinematics
Motion Tracking Sensors
Quaternions
topic Biosensors
Imu
Inertial Measurement Units
Instantaneous Axis Of Rotation
Instantaneous Axis-angle Representations
Inverse And Forward Kinematics
Motion Tracking Sensors
Quaternions
https://purl.org/pe-repo/ocde/ford#2.06.01
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.06.01
description Inertial kinetics and kinematics have substantial influences on human biomechanical function. A new algorithm for Inertial Measurement Unit (IMU)-based motion tracking is presented in this work. The primary aims of this paper are to combine recent developments in improved biosensor technology with mainstream motion-tracking hardware to measure the overall performance of human movement based on joint axis-angle representations of limb rotation. This work describes an alternative approach to representing three-dimensional rotations using a normalized vector around which an identified joint angle defines the overall rotation, rather than a traditional Euler angle approach. Furthermore, IMUs allow for the direct measurement of joint angular velocities, offering the opportunity to increase the accuracy of instantaneous axis of rotation estimations. Although the axis-angle representation requires vector quotient algebra (quaternions) to define rotation, this approach may be preferred for many graphics, vision, and virtual reality software applications. The analytical method was validated with laboratory data gathered from an infant dummy leg’s flexion and extension knee movements and applied to a living subject’s upper limb movement. The results showed that the novel approach could reasonably handle a simple case and provide a detailed analysis of axis-angle migration. The described algorithm could play a notable role in the biomechanical analysis of human joints and offers a harbinger of IMU-based biosensors that may detect pathological patterns of joint disease and injury.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2025-10-28T20:12:52Z
dc.date.available.none.fl_str_mv 2025-10-28T20:12:52Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12815/476
dc.identifier.doi.es_PE.fl_str_mv https://doi.org/10.3390/electronics12173694
dc.identifier.journal.es_PE.fl_str_mv Electronics
url https://hdl.handle.net/20.500.12815/476
https://doi.org/10.3390/electronics12173694
identifier_str_mv Electronics
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.source.none.fl_str_mv reponame:UTEC-Institucional
instname:Universidad de Ingeniería y tecnología
instacron:UTEC
instname_str Universidad de Ingeniería y tecnología
instacron_str UTEC
institution UTEC
reponame_str UTEC-Institucional
collection UTEC-Institucional
bitstream.url.fl_str_mv http://repositorio.utec.edu.pe/bitstream/20.500.12815/476/1/12173694.html
http://repositorio.utec.edu.pe/bitstream/20.500.12815/476/2/12173694.html.txt
bitstream.checksum.fl_str_mv 3551f48283a07e21f4c3917d7b2965ff
1ffa6afae980d20b989794057fdf02ce
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTEC
repository.mail.fl_str_mv repositorio@utec.edu.pe
_version_ 1847605624480727040
score 13.931421
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).