Comparación de k-means y modelo autorregresivo integrado de media móvil en la predicción de morosidad de cuotas sociales en el colegio de ingenieros del Perú – Consejo Departamental Lambayeque

Descripción del Articulo

El proyecto ha sido nomidado: "COMPARACIÓN DE K-MEANS Y MODELO AUTORREGRESIVO INTEGRADO DE MEDIA MOVIL EN LA MOROSIDAD DE CUOTAS SOCIALES EN EL COLEGIO DE INGENIEROS DEL PERU - CONSEJO DEPARTAMENTAL LAMBAYEQUE" su fin es ser utilizado y comparar dos algoritmos de predicción, donde K-MEANS...

Descripción completa

Detalles Bibliográficos
Autor: Martínez Panta, Víctor Manuel
Formato: tesis de grado
Fecha de Publicación:2020
Institución:Universidad Señor de Sipan
Repositorio:USS-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.uss.edu.pe:20.500.12802/9218
Enlace del recurso:https://hdl.handle.net/20.500.12802/9218
Nivel de acceso:acceso abierto
Materia:Cuotas Sociales
Morosidad
K- Means
Modelo Autorregresivo
Integrado Media Móvil
Computacional
Estadistico
http://purl.org/pe-repo/ocde/ford#2.02.04
id USSS_f617e534cbc59a5e593d7b6ace6a2a2e
oai_identifier_str oai:repositorio.uss.edu.pe:20.500.12802/9218
network_acronym_str USSS
network_name_str USS-Institucional
repository_id_str 4829
dc.title.es_PE.fl_str_mv Comparación de k-means y modelo autorregresivo integrado de media móvil en la predicción de morosidad de cuotas sociales en el colegio de ingenieros del Perú – Consejo Departamental Lambayeque
title Comparación de k-means y modelo autorregresivo integrado de media móvil en la predicción de morosidad de cuotas sociales en el colegio de ingenieros del Perú – Consejo Departamental Lambayeque
spellingShingle Comparación de k-means y modelo autorregresivo integrado de media móvil en la predicción de morosidad de cuotas sociales en el colegio de ingenieros del Perú – Consejo Departamental Lambayeque
Martínez Panta, Víctor Manuel
Cuotas Sociales
Morosidad
K- Means
Modelo Autorregresivo
Integrado Media Móvil
Computacional
Estadistico
http://purl.org/pe-repo/ocde/ford#2.02.04
title_short Comparación de k-means y modelo autorregresivo integrado de media móvil en la predicción de morosidad de cuotas sociales en el colegio de ingenieros del Perú – Consejo Departamental Lambayeque
title_full Comparación de k-means y modelo autorregresivo integrado de media móvil en la predicción de morosidad de cuotas sociales en el colegio de ingenieros del Perú – Consejo Departamental Lambayeque
title_fullStr Comparación de k-means y modelo autorregresivo integrado de media móvil en la predicción de morosidad de cuotas sociales en el colegio de ingenieros del Perú – Consejo Departamental Lambayeque
title_full_unstemmed Comparación de k-means y modelo autorregresivo integrado de media móvil en la predicción de morosidad de cuotas sociales en el colegio de ingenieros del Perú – Consejo Departamental Lambayeque
title_sort Comparación de k-means y modelo autorregresivo integrado de media móvil en la predicción de morosidad de cuotas sociales en el colegio de ingenieros del Perú – Consejo Departamental Lambayeque
author Martínez Panta, Víctor Manuel
author_facet Martínez Panta, Víctor Manuel
author_role author
dc.contributor.advisor.fl_str_mv Mejía Cabrera, Heber Ivan
dc.contributor.author.fl_str_mv Martínez Panta, Víctor Manuel
dc.subject.es_PE.fl_str_mv Cuotas Sociales
Morosidad
K- Means
Modelo Autorregresivo
Integrado Media Móvil
Computacional
Estadistico
topic Cuotas Sociales
Morosidad
K- Means
Modelo Autorregresivo
Integrado Media Móvil
Computacional
Estadistico
http://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.04
description El proyecto ha sido nomidado: "COMPARACIÓN DE K-MEANS Y MODELO AUTORREGRESIVO INTEGRADO DE MEDIA MOVIL EN LA MOROSIDAD DE CUOTAS SOCIALES EN EL COLEGIO DE INGENIEROS DEL PERU - CONSEJO DEPARTAMENTAL LAMBAYEQUE" su fin es ser utilizado y comparar dos algoritmos de predicción, donde K-MEANS (computacional) y la otra técnica es AUTORREGRESIVO INTEGRADO DE MEDIA MOVIL (estadística), ya que nos gustaría saber qué algoritmo predictivo es mas eficaz a la predicción de la morosidad del colegio de ingenieros – CD Lambayeque, en la cual no se encuentran estudios realizados en el área de morosidad. El objetivo principal de la actual investigación consta de comprender que algoritmo es apto en la predicción de la morosidad, por la cual se tiene que evaluar la exactitud, precisión y especificación el BCR (Tasa de Clasificación Equilibrado), donde se puede usar el procedimiento de ETL para captar datos de los miembros del colegio , la cuál, los datos relevantes se recopilarán y procesarán mediante algoritmos una vez obtenidos los resultados , se utilizarán para la toma de decision en el colegio de ingenieros, ya que posteriormente se utilizará para la estimación al nivel de la morosidad según la cantidad que se ingrese que se genere por mes u anualmente. Una vez realizado el proceso de comparación de estos algoritmos de predicción, se demostró según los indicadores propuestos iniciando la investigación, que el modelo K- means tiene una exactitud de 95.7% mas que el modelo ARIMA obteniendo un 95.5% de exactitud; en cuanto al tiempo de predicción de cada tecnica notamos una ligera diferencia de unos 44 seg que empleo ARIMA contra 39 seg que se tardo k-Means, asi que definitivamente podemos concluir que el modelo K- means tiene un porcentaje mas alto de presicion para predicir la morosidad en el colegio de Ingenieros del Perú CD – Lambayeque.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2022-03-08T14:18:07Z
dc.date.available.none.fl_str_mv 2022-03-08T14:18:07Z
dc.date.issued.fl_str_mv 2020
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12802/9218
url https://hdl.handle.net/20.500.12802/9218
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Perú
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Perú
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Señor de Sipán
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Repositorio Institucional - USS
dc.source.none.fl_str_mv reponame:USS-Institucional
instname:Universidad Señor de Sipan
instacron:USS
instname_str Universidad Señor de Sipan
instacron_str USS
institution USS
reponame_str USS-Institucional
collection USS-Institucional
dc.source.uri.es_PE.fl_str_mv Repositorio Institucional USS
bitstream.url.fl_str_mv http://repositorio.uss.edu.pe//bitstream/20.500.12802/9218/4/Mart%c3%adnez%20Panta%20V%c3%adctor%20Manuel.pdf.txt
http://repositorio.uss.edu.pe//bitstream/20.500.12802/9218/5/Mart%c3%adnez%20Panta%20V%c3%adctor%20Manuel.pdf.jpg
http://repositorio.uss.edu.pe//bitstream/20.500.12802/9218/3/license.txt
http://repositorio.uss.edu.pe//bitstream/20.500.12802/9218/2/license_rdf
http://repositorio.uss.edu.pe//bitstream/20.500.12802/9218/1/Mart%c3%adnez%20Panta%20V%c3%adctor%20Manuel.pdf
bitstream.checksum.fl_str_mv 83d708824d3f9793bd6e1621880af7cc
05226db1261933571c5df02c34b27541
8a4605be74aa9ea9d79846c1fba20a33
3655808e5dd46167956d6870b0f43800
ca2f07267fc5efdba5128321b8421508
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Señor de Sipán
repository.mail.fl_str_mv repositorio@uss.edu.pe
_version_ 1772955117753991168
spelling Mejía Cabrera, Heber IvanMartínez Panta, Víctor Manuel2022-03-08T14:18:07Z2022-03-08T14:18:07Z2020https://hdl.handle.net/20.500.12802/9218El proyecto ha sido nomidado: "COMPARACIÓN DE K-MEANS Y MODELO AUTORREGRESIVO INTEGRADO DE MEDIA MOVIL EN LA MOROSIDAD DE CUOTAS SOCIALES EN EL COLEGIO DE INGENIEROS DEL PERU - CONSEJO DEPARTAMENTAL LAMBAYEQUE" su fin es ser utilizado y comparar dos algoritmos de predicción, donde K-MEANS (computacional) y la otra técnica es AUTORREGRESIVO INTEGRADO DE MEDIA MOVIL (estadística), ya que nos gustaría saber qué algoritmo predictivo es mas eficaz a la predicción de la morosidad del colegio de ingenieros – CD Lambayeque, en la cual no se encuentran estudios realizados en el área de morosidad. El objetivo principal de la actual investigación consta de comprender que algoritmo es apto en la predicción de la morosidad, por la cual se tiene que evaluar la exactitud, precisión y especificación el BCR (Tasa de Clasificación Equilibrado), donde se puede usar el procedimiento de ETL para captar datos de los miembros del colegio , la cuál, los datos relevantes se recopilarán y procesarán mediante algoritmos una vez obtenidos los resultados , se utilizarán para la toma de decision en el colegio de ingenieros, ya que posteriormente se utilizará para la estimación al nivel de la morosidad según la cantidad que se ingrese que se genere por mes u anualmente. Una vez realizado el proceso de comparación de estos algoritmos de predicción, se demostró según los indicadores propuestos iniciando la investigación, que el modelo K- means tiene una exactitud de 95.7% mas que el modelo ARIMA obteniendo un 95.5% de exactitud; en cuanto al tiempo de predicción de cada tecnica notamos una ligera diferencia de unos 44 seg que empleo ARIMA contra 39 seg que se tardo k-Means, asi que definitivamente podemos concluir que el modelo K- means tiene un porcentaje mas alto de presicion para predicir la morosidad en el colegio de Ingenieros del Perú CD – Lambayeque.TesisInfraestructura, Tecnología y Medio Ambienteapplication/pdfspaUniversidad Señor de SipánPEinfo:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 2.5 Perúhttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Repositorio Institucional - USSRepositorio Institucional USSreponame:USS-Institucionalinstname:Universidad Señor de Sipaninstacron:USSCuotas SocialesMorosidadK- MeansModelo AutorregresivoIntegrado Media MóvilComputacionalEstadisticohttp://purl.org/pe-repo/ocde/ford#2.02.04Comparación de k-means y modelo autorregresivo integrado de media móvil en la predicción de morosidad de cuotas sociales en el colegio de ingenieros del Perú – Consejo Departamental Lambayequeinfo:eu-repo/semantics/bachelorThesisSUNEDUUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y UrbanismoIngeniero de SistemasIngeniería de Sistemas41639565https://orcid.org/0000-0002-0007-092872428914612076Mejía Cabrera, Heber IvánDíaz Vidarte, Miguel OrlandoAtalaya Urrutia, Carlos Williamhttp://purl.org/pe-repo/renati/level#tituloProfesionalhttp://purl.org/pe-repo/renati/type#tesisTEXTMartínez Panta Víctor Manuel.pdf.txtMartínez Panta Víctor Manuel.pdf.txtExtracted texttext/plain226557http://repositorio.uss.edu.pe//bitstream/20.500.12802/9218/4/Mart%c3%adnez%20Panta%20V%c3%adctor%20Manuel.pdf.txt83d708824d3f9793bd6e1621880af7ccMD54THUMBNAILMartínez Panta Víctor Manuel.pdf.jpgMartínez Panta Víctor Manuel.pdf.jpgGenerated Thumbnailimage/jpeg11277http://repositorio.uss.edu.pe//bitstream/20.500.12802/9218/5/Mart%c3%adnez%20Panta%20V%c3%adctor%20Manuel.pdf.jpg05226db1261933571c5df02c34b27541MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.uss.edu.pe//bitstream/20.500.12802/9218/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://repositorio.uss.edu.pe//bitstream/20.500.12802/9218/2/license_rdf3655808e5dd46167956d6870b0f43800MD52ORIGINALMartínez Panta Víctor Manuel.pdfMartínez Panta Víctor Manuel.pdfapplication/pdf5466647http://repositorio.uss.edu.pe//bitstream/20.500.12802/9218/1/Mart%c3%adnez%20Panta%20V%c3%adctor%20Manuel.pdfca2f07267fc5efdba5128321b8421508MD5120.500.12802/9218oai:repositorio.uss.edu.pe:20.500.12802/92182022-03-09 03:03:57.421Repositorio Institucional de la Universidad Señor de Sipánrepositorio@uss.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.958958
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).