Comparación de k-means y modelo autorregresivo integrado de media móvil en la predicción de morosidad de cuotas sociales en el colegio de ingenieros del Perú – Consejo Departamental Lambayeque

Descripción del Articulo

El proyecto ha sido nomidado: "COMPARACIÓN DE K-MEANS Y MODELO AUTORREGRESIVO INTEGRADO DE MEDIA MOVIL EN LA MOROSIDAD DE CUOTAS SOCIALES EN EL COLEGIO DE INGENIEROS DEL PERU - CONSEJO DEPARTAMENTAL LAMBAYEQUE" su fin es ser utilizado y comparar dos algoritmos de predicción, donde K-MEANS...

Descripción completa

Detalles Bibliográficos
Autor: Martínez Panta, Víctor Manuel
Formato: tesis de grado
Fecha de Publicación:2020
Institución:Universidad Señor de Sipan
Repositorio:USS-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.uss.edu.pe:20.500.12802/9218
Enlace del recurso:https://hdl.handle.net/20.500.12802/9218
Nivel de acceso:acceso abierto
Materia:Cuotas Sociales
Morosidad
K- Means
Modelo Autorregresivo
Integrado Media Móvil
Computacional
Estadistico
http://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:El proyecto ha sido nomidado: "COMPARACIÓN DE K-MEANS Y MODELO AUTORREGRESIVO INTEGRADO DE MEDIA MOVIL EN LA MOROSIDAD DE CUOTAS SOCIALES EN EL COLEGIO DE INGENIEROS DEL PERU - CONSEJO DEPARTAMENTAL LAMBAYEQUE" su fin es ser utilizado y comparar dos algoritmos de predicción, donde K-MEANS (computacional) y la otra técnica es AUTORREGRESIVO INTEGRADO DE MEDIA MOVIL (estadística), ya que nos gustaría saber qué algoritmo predictivo es mas eficaz a la predicción de la morosidad del colegio de ingenieros – CD Lambayeque, en la cual no se encuentran estudios realizados en el área de morosidad. El objetivo principal de la actual investigación consta de comprender que algoritmo es apto en la predicción de la morosidad, por la cual se tiene que evaluar la exactitud, precisión y especificación el BCR (Tasa de Clasificación Equilibrado), donde se puede usar el procedimiento de ETL para captar datos de los miembros del colegio , la cuál, los datos relevantes se recopilarán y procesarán mediante algoritmos una vez obtenidos los resultados , se utilizarán para la toma de decision en el colegio de ingenieros, ya que posteriormente se utilizará para la estimación al nivel de la morosidad según la cantidad que se ingrese que se genere por mes u anualmente. Una vez realizado el proceso de comparación de estos algoritmos de predicción, se demostró según los indicadores propuestos iniciando la investigación, que el modelo K- means tiene una exactitud de 95.7% mas que el modelo ARIMA obteniendo un 95.5% de exactitud; en cuanto al tiempo de predicción de cada tecnica notamos una ligera diferencia de unos 44 seg que empleo ARIMA contra 39 seg que se tardo k-Means, asi que definitivamente podemos concluir que el modelo K- means tiene un porcentaje mas alto de presicion para predicir la morosidad en el colegio de Ingenieros del Perú CD – Lambayeque.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).