Comparación de algoritmos de redes neuronales para mejorar la detección de intrusos en redes de área local

Descripción del Articulo

Esta presente investigación sobre sistemas de detección de intrusos usando algoritmos de inteligencia artificial, el cual representan hoy en día un factor muy importante que abarca en la seguridad informática, teniendo como objetivo principal la detección de actividades que no han sido autorizadas,...

Descripción completa

Detalles Bibliográficos
Autor: Guevara Palomino, Nilton
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Señor de Sipan
Repositorio:USS-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.uss.edu.pe:20.500.12802/9128
Enlace del recurso:https://hdl.handle.net/20.500.12802/9128
Nivel de acceso:acceso abierto
Materia:Algoritmos
Anomalías
IDS
Redes Neuronales
Inteligencia artificial
Ataques
Seguridad informática
http://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Esta presente investigación sobre sistemas de detección de intrusos usando algoritmos de inteligencia artificial, el cual representan hoy en día un factor muy importante que abarca en la seguridad informática, teniendo como objetivo principal la detección de actividades que no han sido autorizadas, por lo que se debe de realizar la identificación de los ataques realizados a los sistemas de flujo de datos en una red. En esta tesis se describe y propone el estudio de tres redes neuronales: RNA FeedForward y Elman usando algoritmo de aprendizaje Backpropagation y la Red Neuronal Recurrente (RNN) usando algoritmo RTLR, con el fin de realizar una comparación en la detección de intrusos y obtener cuál de ellas es la mejor en el monitoreo de una red de datos, donde se captura los paquetes que circulan hacia el protocolo HTTP (Hipertexto Transfer Protocol). El sistema fue diseñado y simulado mediante las herramientas del toolbox de MATLAB permitiendo a la red neuronal demostrar el alto rendimiento y desempeño en la detección de intrusos mostrando al usuario información relevante en los ataques detectados. Los resultados finales de la investigación fueron que el tipo de red neuronal recurrente mostró superioridad a las demás redes en velocidad, convergencia y efectividad, alcanzando más del 90% en porcentaje de clasificación correcta en un tiempo de 60 épocas.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).