Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors

Descripción del Articulo

Nutritional deficiencies in coffee plants affect production and therefore it is important its early identification. The current research is focused on the automatic identification of nutritional deficiencies of Boron (B), Calcium (Ca), Iron (Fe) and Potassium (K), by using shape and texture descript...

Descripción completa

Detalles Bibliográficos
Autores: Vassallo-Barco, Marcelo, Vives-Garnique, Luis, Tuesta-Monteza, Víctor, Mejía-Cabrera, Heber I, Yera Toledo, Raciel
Formato: artículo
Fecha de Publicación:2017
Institución:Universidad Señor de Sipan
Repositorio:USS-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.uss.edu.pe:20.500.12802/15892
Enlace del recurso:https://www.scopus.com/pages/publications/85016474670
https://hdl.handle.net/20.500.12802/15892
Nivel de acceso:acceso abierto
Materia:Coffee tree leaves
Nutritional deficiencies
Image processing
Shape and textual description
Supervised classifier
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Nutritional deficiencies in coffee plants affect production and therefore it is important its early identification. The current research is focused on the automatic identification of nutritional deficiencies of Boron (B), Calcium (Ca), Iron (Fe) and Potassium (K), by using shape and texture descriptors in images of coffee tree leaves. After the acquisition of images containing coffee tree leaves, they are subjected to a segmentation process using Otsu’s method. Afterwards, for the resulting images they are applied the descriptors Blurred Shape Model (BSM) and Gray-Level Co-occurrence Matrix (GLCM) for extracting characteristics of shape and texture. Finally, the obtained image representation is used for training KNN, Naïve Bayes and Neural Network classifiers by using the extracted features, in order to infer the type of deficiency presented in each analyzed image. The experimental results show that the developed procedure has a high accuracy, being the better results associated to the identification of Boron (B) and Iron (Fe) deficiencies.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).