Comparación de las técnicas de regresión lineal múltiple y red neuronal artificial para estimar el grado de salinidad en suelos con abundante vegetación mediante el procesamiento de imágenes
Descripción del Articulo
Las técnicas Regresión Lineal Múltiple y Red Neuronal Artificial son dos de las técnicas más utilizadas en los trabajos relacionados al presente trabajo, con mayor uso en la clasificación, estimación y predicción de datos a partir de varias variables explicativas y una variable esperada, no obstante...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2020 |
Institución: | Universidad Señor de Sipan |
Repositorio: | USS-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.uss.edu.pe:20.500.12802/8991 |
Enlace del recurso: | https://hdl.handle.net/20.500.12802/8991 |
Nivel de acceso: | acceso restringido |
Materia: | Regresión Lineal Múltiple Red Neuronal Artificial Salinidad Abundante vegetación Imágenes Multiespectrales Índices espectrales Satélite Landsat 8 Error Cuadrático medio http://purl.org/pe-repo/ocde/ford#2.02.04 |
Sumario: | Las técnicas Regresión Lineal Múltiple y Red Neuronal Artificial son dos de las técnicas más utilizadas en los trabajos relacionados al presente trabajo, con mayor uso en la clasificación, estimación y predicción de datos a partir de varias variables explicativas y una variable esperada, no obstante, pocas investigaciones concluyen que técnica es la que entrega mejores resultados en cuanto a precisión. La presente tesis tiene como objetivo determinar que técnica es la más precisa para estimar salinidad en suelos con Abundante Vegetación (Cosecha de Arroz), las técnicas en estudio son: La regresión Lineal Múltiple y Red Neuronal Multicapa. Los datos de entrada para ambas técnicas son valores numéricos relacionados a un pixel de imágenes de tipo .TIFF obtenidas del procesamiento de imágenes del satélite Landsat 8, el cálculo de los valores de las imágenes nos da como resultados índices espectrales expresadas en una nueva imagen de tipo .TIFF, el pixel es ubicado dentro de las imágenes con respecto a una coordenada UTM SUR mapeada al obtener muestras de suelos, las cuales se procesaron en el balotario de la Universidad Pedro Ruiz Gallo para obtener valores numéricos de Conductividad Eléctrica. Utilizaron el NDVI, SAVI, VSSI, NDSI como índices espectrales y otros índices de Salinidad utilizados en estudios anteriores S1, S2, S3, S4, S5. Para la estimación de salinidad a partir de los valores numéricos de índices espectrales se utilizó un modelo de regresión expresado en ecuación resultante de la aplicación de la regresión lineal múltiple, también se utilizó la función de red neuronal de la herramienta Weka, ambos resultados fueron comparados. La variable utilizada para la determinación es el Error Medio Absoluto y Error Cuadrático Medio. Los resultados muestran un mejor desempeño de la técnica de Red Neuronal Artificial al estimar salinidad en suelos con abundante vegetación con un Error Cuadrático de 0.1753. Se recomienda para futuros estudios, utilizar una cantidad mucho mayor de muestras de suelo (CE), para ajustar los valores resultantes de estimación en cada técnica. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).