Exportación Completada — 

Análisis comparativo de algoritmos de aprendizaje automático para clasificar dengue virus

Descripción del Articulo

La enfermedad del dengue, propagada por el mosquito Aedes aegypti, requiere una clasificación precisa de casos para gestionarla de manera efectiva. En este ámbito, la aplicación de algoritmos de aprendizaje automático surge como una herramienta que puede mejorar el diagnóstico y contribuir a estrate...

Descripción completa

Detalles Bibliográficos
Autor: Exebio Chepe, Yolanda Victoria de Fatima
Formato: tesis de grado
Fecha de Publicación:2024
Institución:Universidad Señor de Sipan
Repositorio:USS-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.uss.edu.pe:20.500.12802/12684
Enlace del recurso:https://hdl.handle.net/20.500.12802/12684
Nivel de acceso:acceso abierto
Materia:Aprendizaje automatico
Salud
Algoritmos
Metricas
Dengue
http://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:La enfermedad del dengue, propagada por el mosquito Aedes aegypti, requiere una clasificación precisa de casos para gestionarla de manera efectiva. En este ámbito, la aplicación de algoritmos de aprendizaje automático surge como una herramienta que puede mejorar el diagnóstico y contribuir a estrategias de control más eficientes. Por esta razón, la investigación se enfoca en realizar un análisis comparativo de algoritmos de aprendizaje automático para clasificar el virus del dengue. Se empleó un conjunto de datos de pacientes de un hospital público, recopilando 21,157 datos bajo los criterios de periodo, resultados, sexo, edades, sintomas, autóctono e importado. A través de una revisión de la literatura, se seleccionaron los algoritmos, entre ellos Support Vector Machine, Random Forest y Artificial Neural Network, que demostraron los mejores resultados en precisión. Posteriormente, se fraccionó el conjunto de datos en 14,809 datos (70%) para el entrenamiento y 6,348 datos (30%) para las pruebas. La evaluación del desempeño se llevó a cabo utilizando métricas como precisión, recall y especificidad. Los resultados indicaron que la Red Neuronal Artificial lidera con una precisión del 86.47% y un recall del 92.91% en la clasificación de casos relacionados con el dengue. Al evaluar tres algoritmos de clasificación, la Support Vector Machine destaca por su alto recall, Random Forest presenta un equilibrio sólido, y la Artificial Neural Network exhibe la mayor precisión.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).