Aplicación de redes neuronales artificiales (RNA) al modelamiento de lluvia-escorrentía en la cuenca del río Chancay Lambayeque

Descripción del Articulo

La presente investigación tuvo como objeto de estudio aplicar redes neuronales artificiales al modelamiento de lluvia-escorrentía en la cuenca del río Chancay Lambayeque, asimismo fue del tipo Cuantitativa – Explicativa, con un diseño Transversal. La población y muestra estuvo conformada por 11 esta...

Descripción completa

Detalles Bibliográficos
Autor: Ordoñez Rimarachin, Lourdes Stephany
Formato: tesis de grado
Fecha de Publicación:2022
Institución:Universidad Señor de Sipan
Repositorio:USS-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.uss.edu.pe:20.500.12802/10443
Enlace del recurso:https://hdl.handle.net/20.500.12802/10443
Nivel de acceso:acceso abierto
Materia:Redes neuronales
Modelamiento
Precipitación
Escorrentía
Cuenca
http://purl.org/pe-repo/ocde/ford#2.01.01
Descripción
Sumario:La presente investigación tuvo como objeto de estudio aplicar redes neuronales artificiales al modelamiento de lluvia-escorrentía en la cuenca del río Chancay Lambayeque, asimismo fue del tipo Cuantitativa – Explicativa, con un diseño Transversal. La población y muestra estuvo conformada por 11 estaciones meteorológicas y 01 hidrológica, mientras que las técnicas empleadas fueron la observación y el análisis documental, esta última tuvo como instrumento a la ficha de recolección de datos hidrometeorológicos. Como parte de los resultados, la calibración y posterior validación del modelo de redes neuronales se realizó empleando Redes de Memoria a Largo y Corto Plazo (LSTM), así se obtuvo que en la etapa de validación el modelo alcanzó un coeficiente de Nash de 0.93, correspondiéndole el calificativo de “muy bueno”. Finalmente, se recomienda el modelo de Redes de Memoria a Largo y Corto Plazo (LSTM), para modelamientos futuros que impliquen la simulación de series de tiempo, pues la facilidad de su manejo permite alcanzar buenos resultados.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).