Comparación de técnicas de estimación del grado de salinidad en suelos de escasa vegetación mediante el procesamiento de imágenes multiespectrales

Descripción del Articulo

En el año 2005, El Ministerio de Agricultura (MINAG) realizó un estudio de las zonas agrícolas en el Perú, donde estimó que el 0.24% de 128 521 500 hectáreas de producción agrícola, estaban afectadas por problemas de salinización, y la totalidad de estas se ubican en la Costa del Perú. Asimismo, el...

Descripción completa

Detalles Bibliográficos
Autor: Vilchez Guivar, Daniel Steven
Formato: tesis de grado
Fecha de Publicación:2019
Institución:Universidad Señor de Sipan
Repositorio:USS-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.uss.edu.pe:20.500.12802/6674
Enlace del recurso:https://hdl.handle.net/20.500.12802/6674
Nivel de acceso:acceso abierto
Materia:Salinidad en suelos
conductividad eléctrica
SVM
PLSR
imágenes multiespectrales
https://purl.org/pe-repo/ocde/ford#2.02.04
id USSS_541999bda4a8ae1248bf5caaf5c94db5
oai_identifier_str oai:repositorio.uss.edu.pe:20.500.12802/6674
network_acronym_str USSS
network_name_str USS-Institucional
repository_id_str 4829
dc.title.es_PE.fl_str_mv Comparación de técnicas de estimación del grado de salinidad en suelos de escasa vegetación mediante el procesamiento de imágenes multiespectrales
title Comparación de técnicas de estimación del grado de salinidad en suelos de escasa vegetación mediante el procesamiento de imágenes multiespectrales
spellingShingle Comparación de técnicas de estimación del grado de salinidad en suelos de escasa vegetación mediante el procesamiento de imágenes multiespectrales
Vilchez Guivar, Daniel Steven
Salinidad en suelos
conductividad eléctrica
SVM
PLSR
imágenes multiespectrales
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Comparación de técnicas de estimación del grado de salinidad en suelos de escasa vegetación mediante el procesamiento de imágenes multiespectrales
title_full Comparación de técnicas de estimación del grado de salinidad en suelos de escasa vegetación mediante el procesamiento de imágenes multiespectrales
title_fullStr Comparación de técnicas de estimación del grado de salinidad en suelos de escasa vegetación mediante el procesamiento de imágenes multiespectrales
title_full_unstemmed Comparación de técnicas de estimación del grado de salinidad en suelos de escasa vegetación mediante el procesamiento de imágenes multiespectrales
title_sort Comparación de técnicas de estimación del grado de salinidad en suelos de escasa vegetación mediante el procesamiento de imágenes multiespectrales
author Vilchez Guivar, Daniel Steven
author_facet Vilchez Guivar, Daniel Steven
author_role author
dc.contributor.advisor.fl_str_mv Mejía Cabrera, Heber Iván
dc.contributor.author.fl_str_mv Vilchez Guivar, Daniel Steven
dc.subject.es_PE.fl_str_mv Salinidad en suelos
conductividad eléctrica
SVM
PLSR
imágenes multiespectrales
topic Salinidad en suelos
conductividad eléctrica
SVM
PLSR
imágenes multiespectrales
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description En el año 2005, El Ministerio de Agricultura (MINAG) realizó un estudio de las zonas agrícolas en el Perú, donde estimó que el 0.24% de 128 521 500 hectáreas de producción agrícola, estaban afectadas por problemas de salinización, y la totalidad de estas se ubican en la Costa del Perú. Asimismo, el plan estratégico del 2009 al 2015 del sector agrario de la región Lambayeque, reportó que el sector agrario de la región aportó 0.8% al Producto Bruto Interno (PBI) nacional, y 16,2% a la formación del PBI regional, además los causantes del bajo desarrollo agrario de la región son: el deterioro de suelos por efecto de la salinidad, la escasez de agua y la débil organización de productores. La noticia publicada por el portal del Gobierno Regional de Agricultura Lambayeque el 15 agosto del 2018, en relación con el distrito de Mórrope, detalla que Mórrope sufre de una baja productividad agrícola debido al cultivo del arroz, puesto que dicho cultivo emplea demasiada agua, y sumado a la falta de agua, ocasionó que los terrenos tengan altos niveles de salinidad, y la solución que proponen es el cultivo de algodón en reemplazo al cultivo de arroz. Basado en estos datos se propuso el trabajo de investigación “Comparación de técnicas de estimación del grado de salinidad en suelos de escasa vegetación, mediante el procesamiento de imágenes multiespectrales” para que mediante el procesamiento de imágenes multiespectrales podamos estimar la salinidad de los terrenos de escasa vegetación, y así aprovecharlos mediante la agricultura. Basado en investigaciones relacionadas a estimación a esta se propuso utilizar las técnicas de estimación SVM y PLSR, y utilizar imágenes multiespectrales como medio de extracción de características a partir de indicadores de salinidad y vegetación, y utilizando como validación las pruebas de conductividad eléctrica para el grado de salinidad, la evaluación de estas técnicas demostró que SVM tiene un 98% de precisión y un error promedio de 0.22 dS/m, y PLSR 97% y 0.51 dS/m respectivamente.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-02-18T13:10:58Z
dc.date.available.none.fl_str_mv 2020-02-18T13:10:58Z
dc.date.issued.fl_str_mv 2019
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12802/6674
url https://hdl.handle.net/20.500.12802/6674
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Señor de Sipán
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Repositorio Institucional - USS
Repositorio Institucional USS
dc.source.none.fl_str_mv reponame:USS-Institucional
instname:Universidad Señor de Sipan
instacron:USS
instname_str Universidad Señor de Sipan
instacron_str USS
institution USS
reponame_str USS-Institucional
collection USS-Institucional
bitstream.url.fl_str_mv https://repositorio.uss.edu.pe/bitstream/20.500.12802/6674/4/Vilchez%20Guivar%20Daniel%20Steven.pdf.txt
https://repositorio.uss.edu.pe/bitstream/20.500.12802/6674/5/Vilchez%20Guivar%20Daniel%20Steven.pdf.jpg
https://repositorio.uss.edu.pe/bitstream/20.500.12802/6674/2/license_rdf
https://repositorio.uss.edu.pe/bitstream/20.500.12802/6674/3/license.txt
https://repositorio.uss.edu.pe/bitstream/20.500.12802/6674/1/Vilchez%20Guivar%20Daniel%20Steven.pdf
bitstream.checksum.fl_str_mv f4ae61e7a95a4ed5cab992e2ba7c9d91
df06e9dac8df8bec5952794dc8bc597a
3655808e5dd46167956d6870b0f43800
8a4605be74aa9ea9d79846c1fba20a33
ca6c95ade1d8b4ad3e209dfe436ffb53
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Señor de Sipán
repository.mail.fl_str_mv repositorio@uss.edu.pe
_version_ 1845884107438948352
spelling Mejía Cabrera, Heber IvánVilchez Guivar, Daniel Steven2020-02-18T13:10:58Z2020-02-18T13:10:58Z2019https://hdl.handle.net/20.500.12802/6674En el año 2005, El Ministerio de Agricultura (MINAG) realizó un estudio de las zonas agrícolas en el Perú, donde estimó que el 0.24% de 128 521 500 hectáreas de producción agrícola, estaban afectadas por problemas de salinización, y la totalidad de estas se ubican en la Costa del Perú. Asimismo, el plan estratégico del 2009 al 2015 del sector agrario de la región Lambayeque, reportó que el sector agrario de la región aportó 0.8% al Producto Bruto Interno (PBI) nacional, y 16,2% a la formación del PBI regional, además los causantes del bajo desarrollo agrario de la región son: el deterioro de suelos por efecto de la salinidad, la escasez de agua y la débil organización de productores. La noticia publicada por el portal del Gobierno Regional de Agricultura Lambayeque el 15 agosto del 2018, en relación con el distrito de Mórrope, detalla que Mórrope sufre de una baja productividad agrícola debido al cultivo del arroz, puesto que dicho cultivo emplea demasiada agua, y sumado a la falta de agua, ocasionó que los terrenos tengan altos niveles de salinidad, y la solución que proponen es el cultivo de algodón en reemplazo al cultivo de arroz. Basado en estos datos se propuso el trabajo de investigación “Comparación de técnicas de estimación del grado de salinidad en suelos de escasa vegetación, mediante el procesamiento de imágenes multiespectrales” para que mediante el procesamiento de imágenes multiespectrales podamos estimar la salinidad de los terrenos de escasa vegetación, y así aprovecharlos mediante la agricultura. Basado en investigaciones relacionadas a estimación a esta se propuso utilizar las técnicas de estimación SVM y PLSR, y utilizar imágenes multiespectrales como medio de extracción de características a partir de indicadores de salinidad y vegetación, y utilizando como validación las pruebas de conductividad eléctrica para el grado de salinidad, la evaluación de estas técnicas demostró que SVM tiene un 98% de precisión y un error promedio de 0.22 dS/m, y PLSR 97% y 0.51 dS/m respectivamente.Tesisapplication/pdfspaUniversidad Señor de SipánPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Repositorio Institucional - USSRepositorio Institucional USSreponame:USS-Institucionalinstname:Universidad Señor de Sipaninstacron:USSSalinidad en suelosconductividad eléctricaSVMPLSRimágenes multiespectraleshttps://purl.org/pe-repo/ocde/ford#2.02.04Comparación de técnicas de estimación del grado de salinidad en suelos de escasa vegetación mediante el procesamiento de imágenes multiespectralesinfo:eu-repo/semantics/bachelorThesisSUNEDUUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y UrbanismoIngeniero de SistemasIngeniería de Sistemas612076https://purl.org/pe-repo/renati/level#tituloProfesionalhttps://purl.org/pe-repo/renati/type#tesisTEXTVilchez Guivar Daniel Steven.pdf.txtVilchez Guivar Daniel Steven.pdf.txtExtracted texttext/plain112298https://repositorio.uss.edu.pe/bitstream/20.500.12802/6674/4/Vilchez%20Guivar%20Daniel%20Steven.pdf.txtf4ae61e7a95a4ed5cab992e2ba7c9d91MD54THUMBNAILVilchez Guivar Daniel Steven.pdf.jpgVilchez Guivar Daniel Steven.pdf.jpgGenerated Thumbnailimage/jpeg11461https://repositorio.uss.edu.pe/bitstream/20.500.12802/6674/5/Vilchez%20Guivar%20Daniel%20Steven.pdf.jpgdf06e9dac8df8bec5952794dc8bc597aMD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uss.edu.pe/bitstream/20.500.12802/6674/2/license_rdf3655808e5dd46167956d6870b0f43800MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.uss.edu.pe/bitstream/20.500.12802/6674/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALVilchez Guivar Daniel Steven.pdfVilchez Guivar Daniel Steven.pdfapplication/pdf2273152https://repositorio.uss.edu.pe/bitstream/20.500.12802/6674/1/Vilchez%20Guivar%20Daniel%20Steven.pdfca6c95ade1d8b4ad3e209dfe436ffb53MD5120.500.12802/6674oai:repositorio.uss.edu.pe:20.500.12802/66742021-04-23 02:18:31.49Repositorio Institucional de la Universidad Señor de Sipánrepositorio@uss.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.129854
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).