Prediction of large whale distributions: A comparison of presence-absence and presence-only modeling techniques

Descripción del Articulo

Species distribution models that predict species occurrence or density by quantifying relationships with environmental variables are used for a variety of scientific investigations and management applications. For endangered species, such as large whales, models help to understand the ecological fac...

Descripción completa

Detalles Bibliográficos
Autores: Fiedler, Paul C., Redfern, Jessica V., Forney, Karin A., Palacios, Daniel M., Sheredy, Corey, Rasmussen, Kristin, García-Godos, Ignacio A., Santillán, Luis, Tetley, Michael J., Félix, Fernando, Ballance, Lisa Taylor
Formato: artículo
Fecha de Publicación:2018
Institución:Universidad San Ignacio de Loyola
Repositorio:USIL-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.usil.edu.pe:20.500.14005/4000
Enlace del recurso:https://hdl.handle.net/20.500.14005/4000
https://dx.doi.org/10.3389/fmars.2018.00419
Nivel de acceso:acceso embargado
Materia:Maximum entropy
Species distribution model
Eastern tropical Pacific
Generalized additive model
id USIL_cc52d3aa32bb2220b683bee427b50ab8
oai_identifier_str oai:repositorio.usil.edu.pe:20.500.14005/4000
network_acronym_str USIL
network_name_str USIL-Institucional
repository_id_str 3128
spelling 8328af67-a82a-476b-99c0-805130531be8-152f83ba8-c86a-4472-89b8-febfd3549dad-1e6c5813c-0186-4641-af2f-140ae501f889-176e07a8a-9d77-4d2b-a8de-48940e3c82a6-1ac248d20-7802-4559-9464-47c23f496b86-1943bf31a-d138-40c2-be90-127d17aa91c5-1da15456a-a351-4ba8-9a37-be5a8b6c860b-17ed117a5-e71a-40f8-ad92-c7ddd04ae532-14c470acf-c67c-43ca-9077-13bb1d7cecd6-1846f7d5a-42c7-4e3d-adce-cfe117fa87c6-114d7bd61-b808-42f2-9782-eed12ad7207e-1Fiedler, Paul C.Redfern, Jessica V.Forney, Karin A.Palacios, Daniel M.Sheredy, CoreyRasmussen, KristinGarcía-Godos, Ignacio A.Santillán, LuisTetley, Michael J.Félix, FernandoBallance, Lisa Taylor2018-12-06T20:03:25Z2018-12-06T20:03:25Z2018-11-12Species distribution models that predict species occurrence or density by quantifying relationships with environmental variables are used for a variety of scientific investigations and management applications. For endangered species, such as large whales, models help to understand the ecological factors influencing variability in distributions and to assess potential risk from shipping, fishing, and other human activities. Systematic surveys record species presence and absence, as well as the associated search effort, but are very expensive. Presence-only data consisting only of sightings can increase sample size, but may be biased in both geographical and niche space. We built generalized additive models (GAMs) using presence-absence sightings data and maximum entropy models (Maxent) using the same presence-absence sightings data, and also using presence-only sightings data, for four large whale species in the eastern tropical Pacific Ocean: humpback (Megaptera novaeangliae), blue (Balaenoptera musculus), Bryde's (Balaenoptera edeni), and sperm whales (Physeter macrocephalus). Environmental variables were surface temperature, surface salinity, thermocline depth, stratification index, and seafloor depth. We compared predicted distributions from each of the two model types. Maxent and GAM model predictions based on systematic survey data are very similar, when Maxent absences are selected from the survey trackline data. However, we show that spatial bias in presence-only Maxent predictions can be caused by using pseudo-absences instead of observed absences and by the sampling biases of both opportunistic data and stratified systematic survey data with uneven coverage between strata. Predictions of uncommon large whale distributions from Maxent or other presence-only techniques may be useful for science or management, but only if spatial bias in the observations is addressed in the derivation and interpretation of model predictions. © 2018 Fiedler, Redfern, Forney, Palacios, Sheredy, Rasmussen, García-Godos, Santillán, Tetley, Félix and Ballance.Revisado por paresapplication/pdf10.3389/fmars.2018.0041922967745Frontiers in Marine Sciencehttps://hdl.handle.net/20.500.14005/4000https://dx.doi.org/10.3389/fmars.2018.00419spaFrontiers Media S.A.info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Universidad San Ignacio de LoyolaRepositorio Institucional - USILreponame:USIL-Institucionalinstname:Universidad San Ignacio de Loyolainstacron:USILMaximum entropySpecies distribution modelEastern tropical PacificGeneralized additive modelPrediction of large whale distributions: A comparison of presence-absence and presence-only modeling techniquesinfo:eu-repo/semantics/articlePublication20.500.14005/4000oai:repositorio.usil.edu.pe:20.500.14005/40002023-04-17 10:22:37.513https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttps://repositorio.usil.edu.peRepositorio institucional de la Universidad San Ignacio de Loyolarepositorio.institucional@usil.edu.pe
dc.title.es_ES.fl_str_mv Prediction of large whale distributions: A comparison of presence-absence and presence-only modeling techniques
title Prediction of large whale distributions: A comparison of presence-absence and presence-only modeling techniques
spellingShingle Prediction of large whale distributions: A comparison of presence-absence and presence-only modeling techniques
Fiedler, Paul C.
Maximum entropy
Species distribution model
Eastern tropical Pacific
Generalized additive model
title_short Prediction of large whale distributions: A comparison of presence-absence and presence-only modeling techniques
title_full Prediction of large whale distributions: A comparison of presence-absence and presence-only modeling techniques
title_fullStr Prediction of large whale distributions: A comparison of presence-absence and presence-only modeling techniques
title_full_unstemmed Prediction of large whale distributions: A comparison of presence-absence and presence-only modeling techniques
title_sort Prediction of large whale distributions: A comparison of presence-absence and presence-only modeling techniques
author Fiedler, Paul C.
author_facet Fiedler, Paul C.
Redfern, Jessica V.
Forney, Karin A.
Palacios, Daniel M.
Sheredy, Corey
Rasmussen, Kristin
García-Godos, Ignacio A.
Santillán, Luis
Tetley, Michael J.
Félix, Fernando
Ballance, Lisa Taylor
author_role author
author2 Redfern, Jessica V.
Forney, Karin A.
Palacios, Daniel M.
Sheredy, Corey
Rasmussen, Kristin
García-Godos, Ignacio A.
Santillán, Luis
Tetley, Michael J.
Félix, Fernando
Ballance, Lisa Taylor
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Fiedler, Paul C.
Redfern, Jessica V.
Forney, Karin A.
Palacios, Daniel M.
Sheredy, Corey
Rasmussen, Kristin
García-Godos, Ignacio A.
Santillán, Luis
Tetley, Michael J.
Félix, Fernando
Ballance, Lisa Taylor
dc.subject.none.fl_str_mv Maximum entropy
Species distribution model
topic Maximum entropy
Species distribution model
Eastern tropical Pacific
Generalized additive model
dc.subject.es_ES.fl_str_mv Eastern tropical Pacific
Generalized additive model
description Species distribution models that predict species occurrence or density by quantifying relationships with environmental variables are used for a variety of scientific investigations and management applications. For endangered species, such as large whales, models help to understand the ecological factors influencing variability in distributions and to assess potential risk from shipping, fishing, and other human activities. Systematic surveys record species presence and absence, as well as the associated search effort, but are very expensive. Presence-only data consisting only of sightings can increase sample size, but may be biased in both geographical and niche space. We built generalized additive models (GAMs) using presence-absence sightings data and maximum entropy models (Maxent) using the same presence-absence sightings data, and also using presence-only sightings data, for four large whale species in the eastern tropical Pacific Ocean: humpback (Megaptera novaeangliae), blue (Balaenoptera musculus), Bryde's (Balaenoptera edeni), and sperm whales (Physeter macrocephalus). Environmental variables were surface temperature, surface salinity, thermocline depth, stratification index, and seafloor depth. We compared predicted distributions from each of the two model types. Maxent and GAM model predictions based on systematic survey data are very similar, when Maxent absences are selected from the survey trackline data. However, we show that spatial bias in presence-only Maxent predictions can be caused by using pseudo-absences instead of observed absences and by the sampling biases of both opportunistic data and stratified systematic survey data with uneven coverage between strata. Predictions of uncommon large whale distributions from Maxent or other presence-only techniques may be useful for science or management, but only if spatial bias in the observations is addressed in the derivation and interpretation of model predictions. © 2018 Fiedler, Redfern, Forney, Palacios, Sheredy, Rasmussen, García-Godos, Santillán, Tetley, Félix and Ballance.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-12-06T20:03:25Z
dc.date.available.none.fl_str_mv 2018-12-06T20:03:25Z
dc.date.issued.fl_str_mv 2018-11-12
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.3389/fmars.2018.00419
dc.identifier.issn.none.fl_str_mv 22967745
dc.identifier.journal.es_ES.fl_str_mv Frontiers in Marine Science
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.14005/4000
https://dx.doi.org/10.3389/fmars.2018.00419
identifier_str_mv 10.3389/fmars.2018.00419
22967745
Frontiers in Marine Science
url https://hdl.handle.net/20.500.14005/4000
https://dx.doi.org/10.3389/fmars.2018.00419
dc.language.iso.es_ES.fl_str_mv spa
language spa
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.uri.es_ES.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Frontiers Media S.A.
dc.source.es_ES.fl_str_mv Universidad San Ignacio de Loyola
Repositorio Institucional - USIL
dc.source.none.fl_str_mv reponame:USIL-Institucional
instname:Universidad San Ignacio de Loyola
instacron:USIL
instname_str Universidad San Ignacio de Loyola
instacron_str USIL
institution USIL
reponame_str USIL-Institucional
collection USIL-Institucional
repository.name.fl_str_mv Repositorio institucional de la Universidad San Ignacio de Loyola
repository.mail.fl_str_mv repositorio.institucional@usil.edu.pe
_version_ 1846710479631679488
score 13.141987
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).