Polynomial maps with maximal multiplicity and the special closure

Descripción del Articulo

In this article we characterize the polynomial maps F:Cn→Cn for which F−1(0) is finite and their multiplicity μ(F) is equal to n!Vn(Γ˜+(F)) , where Γ˜+(F) is the global Newton polyhedron of F. As an application, we derive a characterization of those polynomial maps whose multiplicity is maximal with...

Descripción completa

Detalles Bibliográficos
Autores: Bivià-Ausina, Carles, Coripaco Huarcaya, Jorge A.
Formato: artículo
Fecha de Publicación:2018
Institución:Universidad San Ignacio de Loyola
Repositorio:USIL-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.usil.edu.pe:usil/3665
Enlace del recurso:https://repositorio.usil.edu.pe/handle/usil/3665
https://link.springer.com/article/10.1007/s00605-018-1204-9
Nivel de acceso:acceso embargado
Materia:Multiplicity (Mathematics)
Newton Polyhedron
Álgebra
id USIL_2412e12103388083c126d63da3b9af77
oai_identifier_str oai:repositorio.usil.edu.pe:usil/3665
network_acronym_str USIL
network_name_str USIL-Institucional
repository_id_str 3128
spelling Bivià-Ausina, CarlesCoripaco Huarcaya, Jorge A.2018-08-13T20:23:15Z2018-08-13T20:23:15Z2018-06-12In this article we characterize the polynomial maps F:Cn→Cn for which F−1(0) is finite and their multiplicity μ(F) is equal to n!Vn(Γ˜+(F)) , where Γ˜+(F) is the global Newton polyhedron of F. As an application, we derive a characterization of those polynomial maps whose multiplicity is maximal with respect to a fixed Newton filtration.Revisado por paresapplication/pdfBivià-Ausina, C., & Huarcaya, J. A. (2018). Polynomial maps with maximal multiplicity and the special closure. Monatshefte für Mathematik, 1-17.0026-92551436-5081Monatshefte für Mathematikhttps://repositorio.usil.edu.pe/handle/usil/3665https://link.springer.com/article/10.1007/s00605-018-1204-9engSpringer NatureMonatshefte für Mathematikinfo:eu-repo/semantics/embargoedAccessUniversidad San Ignacio de LoyolaRepositorio Institucional - USILreponame:USIL-Institucionalinstname:Universidad San Ignacio de Loyolainstacron:USILMultiplicity (Mathematics)Newton PolyhedronÁlgebraPolynomial maps with maximal multiplicity and the special closureinfo:eu-repo/semantics/articleORIGINAL2018_Huarcaya.pdf2018_Huarcaya.pdfPre-printapplication/pdf402101https://repositorio.usil.edu.pe/bitstreams/bbd37385-947d-4b8f-a01e-0d0618ec07f6/download37cb7e0413f02c1c9499c9b771d2a788MD51TEXT2018_Huarcaya.pdf.txt2018_Huarcaya.pdf.txtExtracted texttext/plain42065https://repositorio.usil.edu.pe/bitstreams/ad55a7f7-14d1-4c85-b2d1-5a12ebfe8e5d/downloadd20fd534e7f631a243d7d962f6a0210eMD52THUMBNAIL2018_Huarcaya.pdf.jpg2018_Huarcaya.pdf.jpgGenerated Thumbnailimage/jpeg11649https://repositorio.usil.edu.pe/bitstreams/ed4cdc91-978c-4223-805d-e597d4a3cefb/downloadaeb0a538d09ac993e9edc1cd745bd8ceMD53usil/3665oai:repositorio.usil.edu.pe:usil/36652022-01-31 16:48:29.886https://repositorio.usil.edu.peRepositorio institucional de la Universidad San Ignacio de Loyolabdigital@metabiblioteca.com
dc.title.en.fl_str_mv Polynomial maps with maximal multiplicity and the special closure
title Polynomial maps with maximal multiplicity and the special closure
spellingShingle Polynomial maps with maximal multiplicity and the special closure
Bivià-Ausina, Carles
Multiplicity (Mathematics)
Newton Polyhedron
Álgebra
title_short Polynomial maps with maximal multiplicity and the special closure
title_full Polynomial maps with maximal multiplicity and the special closure
title_fullStr Polynomial maps with maximal multiplicity and the special closure
title_full_unstemmed Polynomial maps with maximal multiplicity and the special closure
title_sort Polynomial maps with maximal multiplicity and the special closure
author Bivià-Ausina, Carles
author_facet Bivià-Ausina, Carles
Coripaco Huarcaya, Jorge A.
author_role author
author2 Coripaco Huarcaya, Jorge A.
author2_role author
dc.contributor.author.fl_str_mv Bivià-Ausina, Carles
Coripaco Huarcaya, Jorge A.
dc.subject.en.fl_str_mv Multiplicity (Mathematics)
Newton Polyhedron
topic Multiplicity (Mathematics)
Newton Polyhedron
Álgebra
dc.subject.es_ES.fl_str_mv Álgebra
description In this article we characterize the polynomial maps F:Cn→Cn for which F−1(0) is finite and their multiplicity μ(F) is equal to n!Vn(Γ˜+(F)) , where Γ˜+(F) is the global Newton polyhedron of F. As an application, we derive a characterization of those polynomial maps whose multiplicity is maximal with respect to a fixed Newton filtration.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-08-13T20:23:15Z
dc.date.available.none.fl_str_mv 2018-08-13T20:23:15Z
dc.date.issued.fl_str_mv 2018-06-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.en.fl_str_mv Bivià-Ausina, C., & Huarcaya, J. A. (2018). Polynomial maps with maximal multiplicity and the special closure. Monatshefte für Mathematik, 1-17.
dc.identifier.issn.none.fl_str_mv 0026-9255
1436-5081
dc.identifier.journal.none.fl_str_mv Monatshefte für Mathematik
dc.identifier.uri.none.fl_str_mv https://repositorio.usil.edu.pe/handle/usil/3665
https://link.springer.com/article/10.1007/s00605-018-1204-9
identifier_str_mv Bivià-Ausina, C., & Huarcaya, J. A. (2018). Polynomial maps with maximal multiplicity and the special closure. Monatshefte für Mathematik, 1-17.
0026-9255
1436-5081
Monatshefte für Mathematik
url https://repositorio.usil.edu.pe/handle/usil/3665
https://link.springer.com/article/10.1007/s00605-018-1204-9
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.en.fl_str_mv Monatshefte für Mathematik
dc.rights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Springer Nature
dc.source.es_ES.fl_str_mv Universidad San Ignacio de Loyola
Repositorio Institucional - USIL
dc.source.none.fl_str_mv reponame:USIL-Institucional
instname:Universidad San Ignacio de Loyola
instacron:USIL
instname_str Universidad San Ignacio de Loyola
instacron_str USIL
institution USIL
reponame_str USIL-Institucional
collection USIL-Institucional
bitstream.url.fl_str_mv https://repositorio.usil.edu.pe/bitstreams/bbd37385-947d-4b8f-a01e-0d0618ec07f6/download
https://repositorio.usil.edu.pe/bitstreams/ad55a7f7-14d1-4c85-b2d1-5a12ebfe8e5d/download
https://repositorio.usil.edu.pe/bitstreams/ed4cdc91-978c-4223-805d-e597d4a3cefb/download
bitstream.checksum.fl_str_mv 37cb7e0413f02c1c9499c9b771d2a788
d20fd534e7f631a243d7d962f6a0210e
aeb0a538d09ac993e9edc1cd745bd8ce
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional de la Universidad San Ignacio de Loyola
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1790534261006139392
score 13.93557
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).