Polynomial maps with maximal multiplicity and the special closure
Descripción del Articulo
In this article we characterize the polynomial maps F:Cn→Cn for which F−1(0) is finite and their multiplicity μ(F) is equal to n!Vn(Γ˜+(F)) , where Γ˜+(F) is the global Newton polyhedron of F. As an application, we derive a characterization of those polynomial maps whose multiplicity is maximal with...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2018 |
Institución: | Universidad San Ignacio de Loyola |
Repositorio: | USIL-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.usil.edu.pe:usil/3665 |
Enlace del recurso: | https://repositorio.usil.edu.pe/handle/usil/3665 https://link.springer.com/article/10.1007/s00605-018-1204-9 |
Nivel de acceso: | acceso embargado |
Materia: | Multiplicity (Mathematics) Newton Polyhedron Álgebra |
id |
USIL_2412e12103388083c126d63da3b9af77 |
---|---|
oai_identifier_str |
oai:repositorio.usil.edu.pe:usil/3665 |
network_acronym_str |
USIL |
network_name_str |
USIL-Institucional |
repository_id_str |
3128 |
spelling |
Bivià-Ausina, CarlesCoripaco Huarcaya, Jorge A.2018-08-13T20:23:15Z2018-08-13T20:23:15Z2018-06-12In this article we characterize the polynomial maps F:Cn→Cn for which F−1(0) is finite and their multiplicity μ(F) is equal to n!Vn(Γ˜+(F)) , where Γ˜+(F) is the global Newton polyhedron of F. As an application, we derive a characterization of those polynomial maps whose multiplicity is maximal with respect to a fixed Newton filtration.Revisado por paresapplication/pdfBivià-Ausina, C., & Huarcaya, J. A. (2018). Polynomial maps with maximal multiplicity and the special closure. Monatshefte für Mathematik, 1-17.0026-92551436-5081Monatshefte für Mathematikhttps://repositorio.usil.edu.pe/handle/usil/3665https://link.springer.com/article/10.1007/s00605-018-1204-9engSpringer NatureMonatshefte für Mathematikinfo:eu-repo/semantics/embargoedAccessUniversidad San Ignacio de LoyolaRepositorio Institucional - USILreponame:USIL-Institucionalinstname:Universidad San Ignacio de Loyolainstacron:USILMultiplicity (Mathematics)Newton PolyhedronÁlgebraPolynomial maps with maximal multiplicity and the special closureinfo:eu-repo/semantics/articleORIGINAL2018_Huarcaya.pdf2018_Huarcaya.pdfPre-printapplication/pdf402101https://repositorio.usil.edu.pe/bitstreams/bbd37385-947d-4b8f-a01e-0d0618ec07f6/download37cb7e0413f02c1c9499c9b771d2a788MD51TEXT2018_Huarcaya.pdf.txt2018_Huarcaya.pdf.txtExtracted texttext/plain42065https://repositorio.usil.edu.pe/bitstreams/ad55a7f7-14d1-4c85-b2d1-5a12ebfe8e5d/downloadd20fd534e7f631a243d7d962f6a0210eMD52THUMBNAIL2018_Huarcaya.pdf.jpg2018_Huarcaya.pdf.jpgGenerated Thumbnailimage/jpeg11649https://repositorio.usil.edu.pe/bitstreams/ed4cdc91-978c-4223-805d-e597d4a3cefb/downloadaeb0a538d09ac993e9edc1cd745bd8ceMD53usil/3665oai:repositorio.usil.edu.pe:usil/36652022-01-31 16:48:29.886https://repositorio.usil.edu.peRepositorio institucional de la Universidad San Ignacio de Loyolabdigital@metabiblioteca.com |
dc.title.en.fl_str_mv |
Polynomial maps with maximal multiplicity and the special closure |
title |
Polynomial maps with maximal multiplicity and the special closure |
spellingShingle |
Polynomial maps with maximal multiplicity and the special closure Bivià-Ausina, Carles Multiplicity (Mathematics) Newton Polyhedron Álgebra |
title_short |
Polynomial maps with maximal multiplicity and the special closure |
title_full |
Polynomial maps with maximal multiplicity and the special closure |
title_fullStr |
Polynomial maps with maximal multiplicity and the special closure |
title_full_unstemmed |
Polynomial maps with maximal multiplicity and the special closure |
title_sort |
Polynomial maps with maximal multiplicity and the special closure |
author |
Bivià-Ausina, Carles |
author_facet |
Bivià-Ausina, Carles Coripaco Huarcaya, Jorge A. |
author_role |
author |
author2 |
Coripaco Huarcaya, Jorge A. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Bivià-Ausina, Carles Coripaco Huarcaya, Jorge A. |
dc.subject.en.fl_str_mv |
Multiplicity (Mathematics) Newton Polyhedron |
topic |
Multiplicity (Mathematics) Newton Polyhedron Álgebra |
dc.subject.es_ES.fl_str_mv |
Álgebra |
description |
In this article we characterize the polynomial maps F:Cn→Cn for which F−1(0) is finite and their multiplicity μ(F) is equal to n!Vn(Γ˜+(F)) , where Γ˜+(F) is the global Newton polyhedron of F. As an application, we derive a characterization of those polynomial maps whose multiplicity is maximal with respect to a fixed Newton filtration. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-08-13T20:23:15Z |
dc.date.available.none.fl_str_mv |
2018-08-13T20:23:15Z |
dc.date.issued.fl_str_mv |
2018-06-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.en.fl_str_mv |
Bivià-Ausina, C., & Huarcaya, J. A. (2018). Polynomial maps with maximal multiplicity and the special closure. Monatshefte für Mathematik, 1-17. |
dc.identifier.issn.none.fl_str_mv |
0026-9255 1436-5081 |
dc.identifier.journal.none.fl_str_mv |
Monatshefte für Mathematik |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.usil.edu.pe/handle/usil/3665 https://link.springer.com/article/10.1007/s00605-018-1204-9 |
identifier_str_mv |
Bivià-Ausina, C., & Huarcaya, J. A. (2018). Polynomial maps with maximal multiplicity and the special closure. Monatshefte für Mathematik, 1-17. 0026-9255 1436-5081 Monatshefte für Mathematik |
url |
https://repositorio.usil.edu.pe/handle/usil/3665 https://link.springer.com/article/10.1007/s00605-018-1204-9 |
dc.language.iso.es_ES.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.en.fl_str_mv |
Monatshefte für Mathematik |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.es_ES.fl_str_mv |
application/pdf |
dc.publisher.es_ES.fl_str_mv |
Springer Nature |
dc.source.es_ES.fl_str_mv |
Universidad San Ignacio de Loyola Repositorio Institucional - USIL |
dc.source.none.fl_str_mv |
reponame:USIL-Institucional instname:Universidad San Ignacio de Loyola instacron:USIL |
instname_str |
Universidad San Ignacio de Loyola |
instacron_str |
USIL |
institution |
USIL |
reponame_str |
USIL-Institucional |
collection |
USIL-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.usil.edu.pe/bitstreams/bbd37385-947d-4b8f-a01e-0d0618ec07f6/download https://repositorio.usil.edu.pe/bitstreams/ad55a7f7-14d1-4c85-b2d1-5a12ebfe8e5d/download https://repositorio.usil.edu.pe/bitstreams/ed4cdc91-978c-4223-805d-e597d4a3cefb/download |
bitstream.checksum.fl_str_mv |
37cb7e0413f02c1c9499c9b771d2a788 d20fd534e7f631a243d7d962f6a0210e aeb0a538d09ac993e9edc1cd745bd8ce |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional de la Universidad San Ignacio de Loyola |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1790534261006139392 |
score |
13.93557 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).