Sistema inteligente para identificar adecuadamente el mango Kent no exportable en el área de muestreo de una empresa agroindustrial de la región Lambayeque

Descripción del Articulo

El presente trabajo de investigación tiene como objetivo realizar un sistema inteligente que permita identificar adecuadamente los mangos Kent no exportables en el área de muestreo de una empresa agroindustrial de la región de Lambayeque. Esto se dio gracias a la problemática que se logró encontrar...

Descripción completa

Detalles Bibliográficos
Autor: Ramos Adanaque, Elmer Antonio
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Católica Santo Toribio de Mogrovejo
Repositorio:USAT-Tesis
Lenguaje:español
OAI Identifier:oai:tesis.usat.edu.pe:20.500.12423/3936
Enlace del recurso:http://hdl.handle.net/20.500.12423/3936
Nivel de acceso:acceso abierto
Materia:Mangos
Industria agrícola
Redes neuronales artificiales
http://purl.org/pe-repo/ocde/ford#2.02.03
Descripción
Sumario:El presente trabajo de investigación tiene como objetivo realizar un sistema inteligente que permita identificar adecuadamente los mangos Kent no exportables en el área de muestreo de una empresa agroindustrial de la región de Lambayeque. Esto se dio gracias a la problemática que se logró encontrar en la empresa estudiada. Para llevar a cabo la solución, se plantearon tres objetivos específicos, estos son: implementar un algoritmo para el preprocesamiento de imágenes de entrada, implementar una red neuronal artificial para una identificación adecuada de los mangos no exportables y obtener la valoración de usabilidad de la solución de acuerdo con la percepción del usuario. Para poner en marcha todo esto, se plantearon dos metodologías a seguir. Estas fueron: La metodología de Machine Learning y la Programming extreme, una fue para crear el modelo computacional y la otra para el sistema web. Los resultados obtenidos por esta solución lograron satisfacer las necesidades planteadas por la entidad. Logrando así un 85% de asertividad al momento de pronosticar las imágenes cargadas.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).