Aplicaciones de algoritmos de aprendizaje reforzado profundo: una revisión sistemática de la literatura
Descripción del Articulo
El objetivo de este estudio es realizar un análisis sistemático de las aplicaciones que se da a los algoritmos de aprendizaje reforzado profundo para identificar cuales están siendo utilizados actualmente y para qué. Con el fin de alcanzar este propósito, se ha realizado una revisión sistemática de...
| Autor: | |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Católica Santo Toribio de Mogrovejo |
| Repositorio: | USAT-Tesis |
| Lenguaje: | español |
| OAI Identifier: | oai:tesis.usat.edu.pe:20.500.12423/4948 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12423/4948 |
| Nivel de acceso: | acceso abierto |
| Materia: | Algoritmos computacionales Aprendizaje http://purl.org/pe-repo/ocde/ford#2.02.04 |
| Sumario: | El objetivo de este estudio es realizar un análisis sistemático de las aplicaciones que se da a los algoritmos de aprendizaje reforzado profundo para identificar cuales están siendo utilizados actualmente y para qué. Con el fin de alcanzar este propósito, se ha realizado una revisión sistemática de los artículos de investigación que resultaron de la búsqueda, y el filtrado, en las bases de datos ScienceDirect, IEEE Xplore y ProQuest. Inicialmente se obtuvieron 926 artículos de los cuales solo 8 pasaron todos los filtros establecidos. Después de su lectura se logró identificar cinco algoritmos los cuales fueron empleados en los sectores de redes, planeamiento de rutas, programación de trabajos y administración de carga. Finalmente, en esta revisión, estos algoritmos demuestran ser de mucha utilidad y tener la capacidad de brindar solución a diversos problemas; y por esta razón se espera que se sigan investigando formas de aplicar estos algoritmos. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).