Aplicación móvil basada en técnicas de clasificación de machine learning como apoyo en el reconocimiento de emociones en textos de estudiantes universitarios

Descripción del Articulo

Los estudiantes universitarios están expuestos a distintos factores económicos, sociales y académicos que afectan su estado emocional, adicionalmente estos tienden a ignorar su salud mental lo que es perjudicial a largo plazo. Debido a esto, en la presente investigación se pretende construir una apl...

Descripción completa

Detalles Bibliográficos
Autor: Benel Ramirez, Sara Maria
Formato: tesis de grado
Fecha de Publicación:2023
Institución:Universidad Católica Santo Toribio de Mogrovejo
Repositorio:USAT-Tesis
Lenguaje:español
OAI Identifier:oai:tesis.usat.edu.pe:20.500.12423/5749
Enlace del recurso:http://hdl.handle.net/20.500.12423/5749
Nivel de acceso:acceso abierto
Materia:Aprendizaje automático
Emociones y sentimientos
Estudiantes
http://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Los estudiantes universitarios están expuestos a distintos factores económicos, sociales y académicos que afectan su estado emocional, adicionalmente estos tienden a ignorar su salud mental lo que es perjudicial a largo plazo. Debido a esto, en la presente investigación se pretende construir una aplicación móvil a través de la cual los escolares puedan llevar un control de su estado anímico con tan solo responder unas simples preguntas. Para poder identificar estas emociones en las respuestas se desarrolló un modelo con una técnica de Machine Learning denominada redes neuronales de tipo Transformer y se desplegó en un servicio web. Este modelo tiene la capacidad de clasificar texto en 6 emociones diferentes como son: tristeza, alegría, enojo, miedo, amor y sorpresa. En la validación se alcanzó una exactitud de 93%, un promedio en la precisión de 89% y en el promedio del puntaje F1 un 88%. Así mismo se creó una aplicación móvil para los estudiantes y una plataforma web de administración en donde se pueda observar el historial de las emociones registradas.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).