Exportación Completada — 

Predicción de la resistencia a la compresión del concreto usando redes neuronales artificiales

Descripción del Articulo

El concreto es el material de construcción más ampliamente utilizado en la actualidad debido a su excepcional capacidad para resistir fuerzas de compresión, comúnmente denominadas como f'c. La obtención del valor de f'c del concreto involucra la realización de diversos ensayos, siendo el e...

Descripción completa

Detalles Bibliográficos
Autor: Bernilla Rodriguez, David Henry
Formato: tesis de grado
Fecha de Publicación:2024
Institución:Universidad Católica Santo Toribio de Mogrovejo
Repositorio:USAT-Tesis
Lenguaje:español
OAI Identifier:oai:tesis.usat.edu.pe:20.500.12423/7506
Enlace del recurso:http://hdl.handle.net/20.500.12423/7506
Nivel de acceso:acceso abierto
Materia:Redes neuronales artificiales
Resistencia a la compresión del concreto
Materiales de construcción sostenibles
Artificial neural networks
Concrete compressive strength
Sustainable construction materials
http://purl.org/pe-repo/ocde/ford#2.01.00
Descripción
Sumario:El concreto es el material de construcción más ampliamente utilizado en la actualidad debido a su excepcional capacidad para resistir fuerzas de compresión, comúnmente denominadas como f'c. La obtención del valor de f'c del concreto involucra la realización de diversos ensayos, siendo el ensayo a compresión simple o uniaxial en probetas de concreto el más comúnmente empleado, evaluando la resistencia a diferentes intervalos de tiempo. Lamentablemente, estas probetas suelen ser desechadas al aire libre, contribuyendo a la contaminación ambiental. En esta investigación, se enfoca en la predicción del valor de f'c del concreto a los 28 días mediante un modelo predictivo basado en redes neuronales artificiales. Los datos de entrada comprenden propiedades de los agregados, tipo de cemento y las proporciones de sus componentes, como agua, cemento y agregados. El único dato de salida es el valor real de f'c obtenido en el ensayo de compresión simple. Estos datos se recopilaron de varios laboratorios en el norte de Perú. La red neuronal se construyó utilizando TensorFlow de Google, con dos capas ocultas que constan de 16 y 8 neuronas respectivamente, y se entrenó durante 450 épocas. Se obtuvo una exactitud en la predicción mayor al 90% en el rango de 210 a 335 kg/cm².
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).