Modelo de pronóstico de rendimiento académico de alumnos en los cursos del programa de estudios básicos de la Universidad Ricardo Palma usando algoritmos de Machine Learning
Descripción del Articulo
En la sociedad actual, el acceso a la educación es un derecho que genera la expectativa de que los estudiantes con un alto rendimiento académico tendrán mejores oportunidades laborales que aquellos con un rendimiento académico normal o inferior. La identificación de oportunidades de mejora educativa...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2019 |
Institución: | Universidad Ricardo Palma |
Repositorio: | URP-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.urp.edu.pe:20.500.14138/2914 |
Enlace del recurso: | https://hdl.handle.net/20.500.14138/2914 |
Nivel de acceso: | acceso abierto |
Materia: | Rendimiento académico Machine Learning Red Neuronal Artificial Boosting Ensamble Pronósticos |
Sumario: | En la sociedad actual, el acceso a la educación es un derecho que genera la expectativa de que los estudiantes con un alto rendimiento académico tendrán mejores oportunidades laborales que aquellos con un rendimiento académico normal o inferior. La identificación de oportunidades de mejora educativa es crucial para el desarrollo de la sociedad. El objetivo de esta investigación es efectuar predicciones, mediante el uso de algoritmos de Machine Learning, con la finalidad de identificar con anticipación a los estudiantes que tienen alta probabilidad de obtener un bajo rendimiento académico en cualquiera de los 13 cursos del Programa de Estudios Básicos de la Universidad Ricardo Palma en Perú, y como consecuencia, poder implementar estrategias que los ayude a tener mejores resultados en dichos cursos. Se presenta la implementación, análisis y comparación de tres algoritmos de Machine Learning: Redes Neuronales Artificiales (RNA), Gradient Boosting Machine (GBM) y XGBoosting; con los cuales se pretende determinar el rendimiento académico a través del pronóstico de la cantidad de estudiantes aprobados y desaprobados para cada curso. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).