Análisis de existencia y unicidad de solución para la ecuación de Brinkman–Navier–Stokes estacionario usando un método de elementos finitos

Descripción del Articulo

En este trabajo se introduce y analiza un método de elementos finitos para la ecuación de Brinkman–Navier–Stokes de tipo estacionario, la cual tiene como incógnitas principales a la velocidad y la presión de un fluido. La idea principal está a inspirada en una técnica usada para la ecuación de Navie...

Descripción completa

Detalles Bibliográficos
Autor: Sánchez Goycochea, Nestor Abel
Formato: tesis de grado
Fecha de Publicación:2020
Institución:Universidad Nacional Pedro Ruiz Gallo
Repositorio:UNPRG-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unprg.edu.pe:20.500.12893/8678
Enlace del recurso:https://hdl.handle.net/20.500.12893/8678
Nivel de acceso:acceso abierto
Materia:Elementos finitos
Presión del fluido
Tasa de convergencia
http://purl.org/pe-repo/ocde/ford#1.01.00
Descripción
Sumario:En este trabajo se introduce y analiza un método de elementos finitos para la ecuación de Brinkman–Navier–Stokes de tipo estacionario, la cual tiene como incógnitas principales a la velocidad y la presión de un fluido. La idea principal está a inspirada en una técnica usada para la ecuación de Navier-Stokes estacionaria, que consiste en introducir un tensor de pseudoesfuerzo como incógnita adicional, relacionando la presión y el radiente de la velocidad con el término convectivo. Además, ésta técnica permite eliminar la presión del análisis, dando origen a una formulación variacional de pseudoesfuerzo–velocidad. Sin embargo, tanto la presión del fluido, como otras variables de interés físico, pueden ser recuperadas mediante un procedimiento de posproceso. Por otra parte, el termino convectivo involucrado, obliga a la velocidad a estar en un espacio no Hilbert. Por tal motivo, se requiere aumentar la formulación variacional con términos adecuados de tipo Galerkin (o tipo residual). El esquema aumentado resultante se escribe como una ecuación de punto fijo equivalente, el cual se analiza combinando el Teorema del punto fijo de Banach, con el Teorema de Lax–Milgram, demostrando así, existencia y unicidad de solución a nivel continuo bajo una suposición de datos pequeños. Para la versión discreta o esquema de Galerkin se usan espacios discretos particulares. Mas precisamente, la velocidad es aproximada mediante funciones continuas, que restringidas a cada elemento de la discretización son poli-nomios de grado ≤ k + 1, mientras que para el tensor de pseudoesfuerzo, se utilizan espacios de Raviart-Thomas de orden k. Gracias a la elección de estos espacios discretos no se requieren condiciones ínf–sup discretas adicionales (como en muchos otros problemas), lo cual hace más simple su análisis. Además, se obtiene una tasa de convergencia óptima proporcionada por las propiedades de aproximación de los espacios discretos elegidos. Finalmente, se presentan dos resultados numéricos que ilustran el buen funcionamiento del método, corroborando así, la tasa de convergencia teórica.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).