Modelo basado en clasificadores difusos para el diagnóstico de covid-19 en la región Lambayeque, 2020
Descripción del Articulo
Las medidas de contención, mitigación y prevención que los gobiernos han aplicado en todo el mundo no parecen ser suficientes para evitar la propagación del Covid-19. El número de infectados y muertos sigue aumentando cada día, lo que pone a prueba la capacidad y la infraestructura de los hospitales...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2021 |
| Institución: | Universidad Privada Antenor Orrego |
| Repositorio: | UPAO-Tesis |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.upao.edu.pe:20.500.12759/8166 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12759/8166 |
| Nivel de acceso: | acceso abierto |
| Materia: | Covid -19 Coronavirus https://purl.org/pe-repo/ocde/ford#2.02.04 |
| Sumario: | Las medidas de contención, mitigación y prevención que los gobiernos han aplicado en todo el mundo no parecen ser suficientes para evitar la propagación del Covid-19. El número de infectados y muertos sigue aumentando cada día, lo que pone a prueba la capacidad y la infraestructura de los hospitales y centros médicos. Por ello, es necesario desarrollar nuevos métodos de diagnóstico basados en los síntomas de los pacientes que permitan generar alertas tempranas para un tratamiento adecuado. Este trabajo presenta un nuevo método en desarrollo para el diagnóstico del Covid-19, basado en los síntomas de los pacientes y en el uso de clasificadores difusos. Se fuzzificaron once (11) variables: malestar general, contacto externo, edad, sexo, fiebre, tos, disnea, producción de flema, mialgia, dolor de cabeza y diarrea. Con estas variables seleccionadas, se establecieron 4096 reglas de conocimiento y, finalmente, se utilizó el método del centro de masa para generar los resultados del diagnóstico. El método se probó con una base de datos de registros clínicos de pacientes sintomáticos y asintomáticos de Covid-19. Al probar el modelo propuesto con datos de pacientes sintomáticos, obtuvimos un 100% de precisión y un 100% de especificidad. Los pacientes según sus síntomas se clasifican en dos clases, lo que permite detectar a los pacientes que requieren atención inmediata de los que tienen síntomas más leves. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).