Fórmulas de Ito para Flujos Estocásticos y sus Aplicaciones
Descripción del Articulo
En este trabajo estamos interesados en estudiar la existencia y unicidad de soluciones ξt para Ecuaciones Diferenciales Estoc´asticas (EDE) definidas sobre una variedad Rieman- niana compacta M . Como las soluciones ξt, pueden ser vistas como aplicaciones continuas sobre la variedad M , entonces es...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2019 |
Institución: | Universidad Nacional de San Agustín |
Repositorio: | UNSA-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.unsa.edu.pe:UNSA/9070 |
Enlace del recurso: | http://repositorio.unsa.edu.pe/handle/UNSA/9070 |
Nivel de acceso: | acceso abierto |
Materia: | Variedades Riemannianas Ecuaciones Diferenciales Estocásticas Integral de Ito Flujos Estocásticos https://purl.org/pe-repo/ocde/ford#1.01.02 |
Sumario: | En este trabajo estamos interesados en estudiar la existencia y unicidad de soluciones ξt para Ecuaciones Diferenciales Estoc´asticas (EDE) definidas sobre una variedad Rieman- niana compacta M . Como las soluciones ξt, pueden ser vistas como aplicaciones continuas sobre la variedad M , entonces es natural estudiar su flujo. A partir de ah´ı, obtendremos algunas aplicaciones geom´etricas asociadas a este flujo estoc´astico. Comenzamos realizan- do un breve an´alisis del C´alculo Estoc´astico. Luego, mostramos existencia y unicidad de soluciones para EDE definidas sobre una variedad M . En base a este an´alisis consideramos a ξt como la soluci´on de la EDE sobre M y damos condiciones para que esta defina un flujo de homeomorfismo sobre M , as´ı mismo, probamos que este flujo es un difeomorfismo sobre M y que satisface la f´ormula de Itˆo. Finalmente, veremos aplicaciones geom´etricas de este flujo. A saber, veremos como actu´a este flujo, primero, sobre campos de vectores X sobre la variedad M y luego sobre 1- formas θ. Para finalmente calcular la f´ormula de Itˆo para el flujo ξt actuando sobre un campo de tensores K. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).