Clasificación de lesiones en imágenes dermatoscópicas usando redes convolucionales profundas, transfer learning, congelamiento de capa óptima y ensamblado
Descripción del Articulo
Optimiza el desempeño en la clasificación de imágenes dermatoscópicas en 7 tipos de lesiones mediante el uso de redes neuronales convolucionales profundas con transfer learning, congelamiento de capa óptima y ensamblado. La visión computacional y las redes neuronales convolucionales profundas han te...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2023 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | UNMSM-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:cybertesis.unmsm.edu.pe:20.500.12672/20954 |
Enlace del recurso: | https://hdl.handle.net/20.500.12672/20954 |
Nivel de acceso: | acceso abierto |
Materia: | Imágenes Dermatoscopia Ensamblador (Lenguaje de programación para computadores) https://purl.org/pe-repo/ocde/ford#2.02.04 |
Sumario: | Optimiza el desempeño en la clasificación de imágenes dermatoscópicas en 7 tipos de lesiones mediante el uso de redes neuronales convolucionales profundas con transfer learning, congelamiento de capa óptima y ensamblado. La visión computacional y las redes neuronales convolucionales profundas han tenido un impacto significativo en la actividad médica, siendo utilizadas para el diagnóstico de enfermedades mediante imágenes y detección de patrones. Los resultados del estudio demuestran una mejora en el desempeño de la clasificación del diagnóstico al aplicar un método novedoso de congelamiento mediante búsqueda binaria mejorando su exactitud hasta un 3.18 %. Además, se compara este enfoque con la propuesta de Nagae, que utiliza algoritmos genéticos para el congelamiento de capas, obteniendo en algunos casos una mejora de hasta un 2.65% en exactitud. Posteriormente, se aplican diversos métodos de ensamblado para mejorar hasta un 4.69% en exactitud. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).