Teorema de factorización de Weierstrass

Descripción del Articulo

Expone las condiciones para que una función se desarrolle en producto de Weierstrass. El teorema de Weierstrass es analizado con detenimiento y se aplica al desarrollo en producto de la función Gamma y de la función Z- de Riemann. Weierstrass desarrolló su teoría en 1876(Zur Theorie der eindentigen...

Descripción completa

Detalles Bibliográficos
Autor: Llerena Lucero, Teodoro Alfredo
Formato: tesis de grado
Fecha de Publicación:2008
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/12696
Enlace del recurso:https://hdl.handle.net/20.500.12672/12696
Nivel de acceso:acceso abierto
Materia:Teorema de Weierstrass-Stone
https://purl.org/pe-repo/ocde/ford#1.01.01
Descripción
Sumario:Expone las condiciones para que una función se desarrolle en producto de Weierstrass. El teorema de Weierstrass es analizado con detenimiento y se aplica al desarrollo en producto de la función Gamma y de la función Z- de Riemann. Weierstrass desarrolló su teoría en 1876(Zur Theorie der eindentigen analytischen Functionen, Math. Werke 2, pp 77-124). Su principal objetivo fue establecer la “expresión general“ para todas las funciones meromorfas en C, excepto una cantidad nita de puntos. Lo que fue nuevo y sensacional para los contemporáneos de Weierstrass en su construcción, fue la aplicación de la convergencia de los factores productos que no tienen influencia sobre el comportamiento de los ceros. Incidentalmente, de acuerdo a Weierstrass, su idea de forzar la convergencia adjuntando factores exponenciales fue gracias a la fórmula del producto.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).