Controlabilidad exacta interna para la ecuación semilineal del calor
Descripción del Articulo
Estudia el problema de la controlabilidad exacta en el interior del dominio Ω asociado a la ecuación semilineal parabólica { y′ − ∆y + f(y) = h , en Q | y = 0 , sobre Σ | y(0) = y0 , en Ω. Se demuestra que para cada estado inicial y 0 ∈ L 2 (Ω) y cada estado final z 0 ∈ L 2 (Ω), es posible encontrar...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2018 |
| Institución: | Universidad Nacional Mayor de San Marcos |
| Repositorio: | UNMSM-Tesis |
| Lenguaje: | español |
| OAI Identifier: | oai:cybertesis.unmsm.edu.pe:20.500.12672/8973 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12672/8973 |
| Nivel de acceso: | acceso abierto |
| Materia: | Ecuación del calor Ecuaciones diferenciales Teoría del control https://purl.org/pe-repo/ocde/ford#1.01.01 |
| Sumario: | Estudia el problema de la controlabilidad exacta en el interior del dominio Ω asociado a la ecuación semilineal parabólica { y′ − ∆y + f(y) = h , en Q | y = 0 , sobre Σ | y(0) = y0 , en Ω. Se demuestra que para cada estado inicial y 0 ∈ L 2 (Ω) y cada estado final z 0 ∈ L 2 (Ω), es posible encontrar una función control h ∈ L 2 (0, T; H−1 (Ω)) que al actuar sobre el sistema conduzca al estado y(x, t) hacia el estado final z 0 en el tiempo T. Además, se demuestra que el control h es Lipschitz continúo sobre los estados finales y se estudia el comportamiento de h cuando f tiende a cero. En la parte final del trabajo se estudia algunas aplicaciones del teorema principal, por ejemplo a los modelos semilineales de Fisher, Kierstead, Slobodkin y Skellam, Fisher - KPP y Jin-ichi-Nagumo. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).