Caracterización de los encajes ordenados inducibles entre hiperespacios
Descripción del Articulo
Un continuo es un espacio métrico, compacto, conexo y no vacío. Para un continuo X se considera la colección C(X) = fA ⊂ X |A es cerrado, conexo y no vacío g denominado hiperespacio de subcontinuos del continuo X. Para dos continuos X e Y y la función f : X → Y continua, sea C(f) : C(X) → C(Y ) la f...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2020 |
| Institución: | Universidad Nacional Mayor de San Marcos |
| Repositorio: | UNMSM-Tesis |
| Lenguaje: | español |
| OAI Identifier: | oai:cybertesis.unmsm.edu.pe:20.500.12672/17329 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12672/17329 |
| Nivel de acceso: | acceso abierto |
| Materia: | Hiperespacio Grupos continuos Espacios topológicos https://purl.org/pe-repo/ocde/ford#1.01.01 |
| Sumario: | Un continuo es un espacio métrico, compacto, conexo y no vacío. Para un continuo X se considera la colección C(X) = fA ⊂ X |A es cerrado, conexo y no vacío g denominado hiperespacio de subcontinuos del continuo X. Para dos continuos X e Y y la función f : X → Y continua, sea C(f) : C(X) → C(Y ) la función inducida entre los correspondientes hiperespacios. Una función H : C(X) → C(Y ) entre hiperespacios es un encaje ordenado si H bajo su imagen es homeomorfismo y si A y B son elementos de C(X) tal que A ⊆ B; entonces H(A) ⊆ H(B). Una función G : C(X) → C(Y ) entre hiperespacios es indeducible si existe una función g : X → Y continua tal que G = C(g). De aquí damos una caracterización de ellos: Si F : C(X) → C(Y ) y G : C(Y ) → C(X) son encajes ordenados y de tipos F1; entonces X es homeomorfo a Y. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).